- •Теория вероятностей и математическая статистика
- •Содержание
- •В ведение
- •1.1 Теоретические сведения к практической работе №1
- •1.2 Примеры решения задач к практической работе №1
- •1.3 Ход работы
- •1.4 Содержание отчета
- •1.5 Варианты заданий для самостоятельной работы
- •1.6 Вопросы к защите практической работы №1
- •2.1 Теоретические сведения к практической работе №2
- •2.1.1 Случайные события
- •2.1.2 Классическое определение вероятности
- •2.1.3 Относительная частота события
- •2.1.4 Статистическая и геометрическая вероятности
- •2.2 Примеры решения задач к практической работе №2
- •2.3 Ход работы
- •2.4 Содержание отчета
- •2.5 Варианты заданий для самостоятельной работы
- •2.6 Вопросы к защите практической работы №2
- •3.1 Теоретические сведения к практической работе №3
- •3.1.1 Теорема сложения вероятностей несовместных событий
- •3.1.2 Противоположные события
- •3.1.3 Теорема умножения вероятностей
- •3.1.4 Вероятность появления хотя бы одного события
- •3.1.5 Формула полной вероятности
- •3.1.6 Формулы Байеса
- •3.2 Примеры решения задач к практической работе №3
- •3.3 Ход работы
- •3.4 Содержание отчета
- •3.5 Варианты заданий для самостоятельной работы
- •3.6 Вопросы к защите практической работы №3
- •4.1 Теоретические сведения к практической работе №4
- •4.1.1 Формула Бернулли
- •4.1.2 Локальная теорема Лапласа
- •4.1.3 Интегральная теорема Лапласа
- •4.2 Примеры решения задач к практической работе №4
- •4.3 Ход работы
- •4.4 Содержание отчета
- •4.5 Варианты заданий для самостоятельной работы
- •4.6 Вопросы к защите практической работы №4
- •5.1 Теоретические сведения к практической работе №5
- •5.1.1 Случайная величина
- •5.1.2 Дискретная случайная величина (дсв)
- •5.1.3 Независимые случайные величины
- •5.1.4 Функция распределения случайной величины
- •5.2 Ход работы
- •5.3 Содержание отчета
- •5.4 Варианты заданий для самостоятельной работы
- •5.5 Вопросы к защите практической работы №5
- •6.1 Теоретические сведения к практической работе №6
- •6.1.1 Математическое ожидание дискретной случайной величины
- •6.1.2 Свойства математического ожидания
- •6.1.3 Дисперсия дискретной случайной величины
- •6.1.4 Свойства дисперсии
- •6.1.5 Среднее квадратическое отклонение дискретной случайной величины
- •6.1.6 Мода и медиана дискретной случайной величины
- •6.2 Ход работы
- •6.3 Содержание отчета
- •6.4 Варианты заданий для самостоятельной работы
- •6.5 Вопросы к защите практической работы №6
- •7.1 Теоретические сведения к практической работе №7
- •7.1.1 Биноминальное распределение вероятностей
- •7.1.2 Распределение Пуассона
- •7.1.3 Геометрическое распределение вероятностей
- •7.1.4 Непрерывная случайная величина (нсв)
- •7.1.5 Равномерно распределённая нсв
- •7.2 Ход работы
- •7.3 Содержание отчета
- •7.4 Варианты заданий для самостоятельной работы
- •7.5 Вопросы к защите практической работы №7
- •8.1 Теоретические сведения к практической работе №8
- •8.1.1 Функция плотности нсв
- •8.1.2 Свойства плотности распределения
- •8.1.3 Числовые характеристики непрерывных случайных величин
- •8.2 Ход работы
- •8.3 Содержание отчета
- •8.4 Варианты заданий для самостоятельной работы
- •8.5 Вопросы к защите практической работы №8
- •9.1 Теоретические сведения к практической работе №9
- •9.1.1 Нормальный закон распределения.
- •9.1.2 Функция Лапласа
- •9.1.3 Показательное распределение
- •9.1.4 Показательный закон надежности
- •9.2 Ход работы
- •9.3 Содержание отчета
- •9.4 Варианты заданий для самостоятельной работы
- •9.5 Вопросы к защите практической работы №9
- •10.1 Теоретические сведения к практической работе №10
- •10.1.1 Генеральная и выборочная совокупности
- •10.1.2 Повторная и бесповторная выборки.
- •10.1.3 Способы отбора
- •10.1.4 Статистическое распределение выборки
- •10.1.5 Эмпирическая функция распределения
- •10.1.6 Полигон и гистограмма
- •10.1.7 Статистические оценки параметров распределения
- •10.1.8 Несмещенные, эффективные и состоятельные оценки
- •10.1.9 Генеральная и выборочная средняя
- •10.1.10 Генеральная и выборочная дисперсия
- •10.1.11 Точность оценки, надёжность. Доверительный интервал
- •10.1.12 Доверительные интервалы для оценки математического ожидания нормального распределения
- •10.1.13 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •10.1.14 Характеристики вариационного ряда
- •10.2 Ход работы
- •10.3 Содержание отчета
- •10.4 Варианты заданий для самостоятельной работы
- •10.5 Вопросы к защите практической работы №10
- •Список использованных источников
- •Приложение а (обязательное)
- •Приложение б (обязательное)
- •Приложение в (обязательное)
- •Приложение г (обязательное)
6.1.3 Дисперсия дискретной случайной величины
Математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.
Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.
Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.
(22)
На практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям.
Поэтому применяется другой способ.
Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания.
(23)
Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М2(Х) – величины постоянные, можно записать:
Итак: .
Пример. Найти дисперсию дискретной случайной величины заданной законом распределения.
-
Х
2
5
6
9
Х2
4
25
36
81
р
0.2
0.3
0.1
0.4
Решение: .
.
.
6.1.4 Свойства дисперсии
1.
Дисперсия постоянной величины равна
нулю.
.
2.
Постоянный множитель можно выносить
за знак дисперсии, возводя его в квадрат.
.
3.
Дисперсия суммы двух независимых
случайных величин равна сумме дисперсий
этих величин.
.
4.
Дисперсия разности двух независимых
случайных величин равна сумме дисперсий
этих величин.
.
Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.
(24)
Пример: Найти дисперсию ДСВ Х – числа появлений события А в 2-х независимых испытаниях, если вероятность появления события в этих испытаниях одинаковы и известно, что M(X) = 1,2.
Применим теорему из п. 6.1.2:
M(X) = np
M(X) = 1,2; n = 2. Найдём p:
1,2 = 2∙p
p = 1,2/2
p = 0,6
q = 1 – p = 1 – 0,6 = 0,4
Найдём дисперсию по формуле :
D(X) = 2∙0,6∙0,4 = 0,48
6.1.5 Среднее квадратическое отклонение дискретной случайной величины
Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.
(25)
Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.
(26)
