
- •Теория вероятностей и математическая статистика
- •Содержание
- •В ведение
- •1.1 Теоретические сведения к практической работе №1
- •1.2 Примеры решения задач к практической работе №1
- •1.3 Ход работы
- •1.4 Содержание отчета
- •1.5 Варианты заданий для самостоятельной работы
- •1.6 Вопросы к защите практической работы №1
- •2.1 Теоретические сведения к практической работе №2
- •2.1.1 Случайные события
- •2.1.2 Классическое определение вероятности
- •2.1.3 Относительная частота события
- •2.1.4 Статистическая и геометрическая вероятности
- •2.2 Примеры решения задач к практической работе №2
- •2.3 Ход работы
- •2.4 Содержание отчета
- •2.5 Варианты заданий для самостоятельной работы
- •2.6 Вопросы к защите практической работы №2
- •3.1 Теоретические сведения к практической работе №3
- •3.1.1 Теорема сложения вероятностей несовместных событий
- •3.1.2 Противоположные события
- •3.1.3 Теорема умножения вероятностей
- •3.1.4 Вероятность появления хотя бы одного события
- •3.1.5 Формула полной вероятности
- •3.1.6 Формулы Байеса
- •3.2 Примеры решения задач к практической работе №3
- •3.3 Ход работы
- •3.4 Содержание отчета
- •3.5 Варианты заданий для самостоятельной работы
- •3.6 Вопросы к защите практической работы №3
- •4.1 Теоретические сведения к практической работе №4
- •4.1.1 Формула Бернулли
- •4.1.2 Локальная теорема Лапласа
- •4.1.3 Интегральная теорема Лапласа
- •4.2 Примеры решения задач к практической работе №4
- •4.3 Ход работы
- •4.4 Содержание отчета
- •4.5 Варианты заданий для самостоятельной работы
- •4.6 Вопросы к защите практической работы №4
- •5.1 Теоретические сведения к практической работе №5
- •5.1.1 Случайная величина
- •5.1.2 Дискретная случайная величина (дсв)
- •5.1.3 Независимые случайные величины
- •5.1.4 Функция распределения случайной величины
- •5.2 Ход работы
- •5.3 Содержание отчета
- •5.4 Варианты заданий для самостоятельной работы
- •5.5 Вопросы к защите практической работы №5
- •6.1 Теоретические сведения к практической работе №6
- •6.1.1 Математическое ожидание дискретной случайной величины
- •6.1.2 Свойства математического ожидания
- •6.1.3 Дисперсия дискретной случайной величины
- •6.1.4 Свойства дисперсии
- •6.1.5 Среднее квадратическое отклонение дискретной случайной величины
- •6.1.6 Мода и медиана дискретной случайной величины
- •6.2 Ход работы
- •6.3 Содержание отчета
- •6.4 Варианты заданий для самостоятельной работы
- •6.5 Вопросы к защите практической работы №6
- •7.1 Теоретические сведения к практической работе №7
- •7.1.1 Биноминальное распределение вероятностей
- •7.1.2 Распределение Пуассона
- •7.1.3 Геометрическое распределение вероятностей
- •7.1.4 Непрерывная случайная величина (нсв)
- •7.1.5 Равномерно распределённая нсв
- •7.2 Ход работы
- •7.3 Содержание отчета
- •7.4 Варианты заданий для самостоятельной работы
- •7.5 Вопросы к защите практической работы №7
- •8.1 Теоретические сведения к практической работе №8
- •8.1.1 Функция плотности нсв
- •8.1.2 Свойства плотности распределения
- •8.1.3 Числовые характеристики непрерывных случайных величин
- •8.2 Ход работы
- •8.3 Содержание отчета
- •8.4 Варианты заданий для самостоятельной работы
- •8.5 Вопросы к защите практической работы №8
- •9.1 Теоретические сведения к практической работе №9
- •9.1.1 Нормальный закон распределения.
- •9.1.2 Функция Лапласа
- •9.1.3 Показательное распределение
- •9.1.4 Показательный закон надежности
- •9.2 Ход работы
- •9.3 Содержание отчета
- •9.4 Варианты заданий для самостоятельной работы
- •9.5 Вопросы к защите практической работы №9
- •10.1 Теоретические сведения к практической работе №10
- •10.1.1 Генеральная и выборочная совокупности
- •10.1.2 Повторная и бесповторная выборки.
- •10.1.3 Способы отбора
- •10.1.4 Статистическое распределение выборки
- •10.1.5 Эмпирическая функция распределения
- •10.1.6 Полигон и гистограмма
- •10.1.7 Статистические оценки параметров распределения
- •10.1.8 Несмещенные, эффективные и состоятельные оценки
- •10.1.9 Генеральная и выборочная средняя
- •10.1.10 Генеральная и выборочная дисперсия
- •10.1.11 Точность оценки, надёжность. Доверительный интервал
- •10.1.12 Доверительные интервалы для оценки математического ожидания нормального распределения
- •10.1.13 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •10.1.14 Характеристики вариационного ряда
- •10.2 Ход работы
- •10.3 Содержание отчета
- •10.4 Варианты заданий для самостоятельной работы
- •10.5 Вопросы к защите практической работы №10
- •Список использованных источников
- •Приложение а (обязательное)
- •Приложение б (обязательное)
- •Приложение в (обязательное)
- •Приложение г (обязательное)
4.6 Вопросы к защите практической работы №4
1) Какие испытания называются независимыми?
2) Формула Бернулли. Вывод.
3) Когда применяется формула Бернулли?
4) Локальная теорема Лапласа.
5) В каких случаях целесообразно применять теорему Лапласа?
6) Как рассчитать значения функции Лапласа?
7) Интегральная теорема Лапласа.
Практическая работа №5
Тема: Решение задач на запись распределения ДСВ.
Цель работы: Изучить понятие случайной величины, дискретной случайной величины (ДСВ), распределения ДСВ и его графическое отображение, понятие функции от ДСВ. Научиться записывать распределение ДСВ, графически изображать распределение ДСВ, записывать распределение функции ДСВ.
5.1 Теоретические сведения к практической работе №5
5.1.1 Случайная величина
Одним из важнейших понятий теории вероятностей является понятие случайной величины.
Случайной называют величину, которая в результате испытания принимает одно и только одно возможное значение наперёд не известное и зависящее от случайных причин, которые заранее не могут быть учтены. Случайная величина является количественной характеристикой случайного результата опыта.
Примеры:
1) количество бракованных изделий в данной партии;
2) число произведённых выстрелов до первого попадания;
3) дальность полёта артиллерийского снаряда;
4) расход электроэнергии на предприятии за месяц.
Обозначать
случайные величины будем прописными
буквами X,
Y,
Z,
а их возможные значения – соответствующими
строчными буквами x,
y,
z.
Например, если случайная величина X
имеет три возможных значения, то они
будут обозначены так:
,
,
.
5.1.2 Дискретная случайная величина (дсв)
Дискретной (прерывной) называют случайную величину, которая принимает отдельные изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.
Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
Законом распределения дискретной случайной величины называется соответствие между возможными значениями и их вероятностями; его можно задать таблично, аналитически (с помощью формулы) и графически.
Рядом распределения дискретной случайной величины называют таблицу в верхней строке которой в порядке возрастаний перечислены все значения случайной величины, а в нижней указаны соответствие вероятности.
-
Х
x1
x2
…
xn
p
p1
p2
…
pn
Т.к. в одном испытании случайная величина принимает только одно возможное значение то события Х= x1, Х= x2, …, Х= xn образуют полную группу. По теореме о полной группе сумма вероятностей равна единице, т.е. p1+ p2+…+ pn=1.
Пример 1. Брошена игральная кость. Составить закон распределения дискретной случайной величины Х-числа выпавших очков.
-
x
1
2
3
4
5
6
p
1/6
1/6
1/6
1/6
1/6
1/6
Закон
распределения можно изобразить
графически. Для этого в системе координат
строят точки
,
,…,
и соединяют их отрезками прямых.
Полученную фигуру называют многоугольником
распределения.
Пример 2. Вероятности того, что студент сдаст семестровый экзамен, в сессию по дисциплинам A и B, равны соответственно 0,7 и 0,9. Составить закон распределения числа семестровых экзаменов, которые сдаст студент.
Решение: Возможные значения случайной величины Х – числа сданных экзаменов – 0, 1, 2.
Пусть
- событие, состоящее в том, что студент
сдаст первый экзамен;
- событие, состоящее в том, что студент
сдаст второй экзамен. Тогда вероятности
того, что студент сдаст в сессию 0, 1, 2
экзамена, будут соответственно равны:
;
Составляем ряд распределения случайной величины:
-
Х
0
1
2
р
0,03
0.34
0.63
И
зобразим
многоугольник распределения для
полученного ряда (см. рис.4)
Рис. 4
При построении многоугольника распределения надо помнить, что соединение полученных точек носит условный характер. В промежутках между значениями случайной величины вероятность не принимает никакого значения. Точки соединены только для наглядности.
Пример 3. Из пяти гвоздик две белые. Составить закон распределения числа белых гвоздик среди двух одновременно взятых.
Решение: Количество белых гвоздик среди двух одновременно взятых может быть 0 или 1 или 2. Поэтому случайная величина будет принимать значения 0, 1, 2. Вероятности этих значений рассчитаем по формуле классического определения.
Закон распределения имеет вид:
X |
0 |
1 |
2 |
р |
0.3 |
0.6 |
0.1 |
Пример 4. В партии из 6 деталей 2 бракованные. Составить закон распределения для числа не бракованных деталей среди 3 отобранных.
Решение: Возможные значения случайной величины таковы: 1, 2, 3. Значение ноль случайная величина принимать не может, потому что ноль не бракованных деталей среди трёх отобранных означает, что все три детали будут бракованными. Но по условию задачи имеется всего две бракованные детали. Вероятности этих значений рассчитаем по формуле классического определения.
Закон распределения имеет вид:
X |
1 |
2 |
3 |
р |
02 |
0.6 |
0.2 |