- •Теория вероятностей и математическая статистика
- •Содержание
- •В ведение
- •1.1 Теоретические сведения к практической работе №1
- •1.2 Примеры решения задач к практической работе №1
- •1.3 Ход работы
- •1.4 Содержание отчета
- •1.5 Варианты заданий для самостоятельной работы
- •1.6 Вопросы к защите практической работы №1
- •2.1 Теоретические сведения к практической работе №2
- •2.1.1 Случайные события
- •2.1.2 Классическое определение вероятности
- •2.1.3 Относительная частота события
- •2.1.4 Статистическая и геометрическая вероятности
- •2.2 Примеры решения задач к практической работе №2
- •2.3 Ход работы
- •2.4 Содержание отчета
- •2.5 Варианты заданий для самостоятельной работы
- •2.6 Вопросы к защите практической работы №2
- •3.1 Теоретические сведения к практической работе №3
- •3.1.1 Теорема сложения вероятностей несовместных событий
- •3.1.2 Противоположные события
- •3.1.3 Теорема умножения вероятностей
- •3.1.4 Вероятность появления хотя бы одного события
- •3.1.5 Формула полной вероятности
- •3.1.6 Формулы Байеса
- •3.2 Примеры решения задач к практической работе №3
- •3.3 Ход работы
- •3.4 Содержание отчета
- •3.5 Варианты заданий для самостоятельной работы
- •3.6 Вопросы к защите практической работы №3
- •4.1 Теоретические сведения к практической работе №4
- •4.1.1 Формула Бернулли
- •4.1.2 Локальная теорема Лапласа
- •4.1.3 Интегральная теорема Лапласа
- •4.2 Примеры решения задач к практической работе №4
- •4.3 Ход работы
- •4.4 Содержание отчета
- •4.5 Варианты заданий для самостоятельной работы
- •4.6 Вопросы к защите практической работы №4
- •5.1 Теоретические сведения к практической работе №5
- •5.1.1 Случайная величина
- •5.1.2 Дискретная случайная величина (дсв)
- •5.1.3 Независимые случайные величины
- •5.1.4 Функция распределения случайной величины
- •5.2 Ход работы
- •5.3 Содержание отчета
- •5.4 Варианты заданий для самостоятельной работы
- •5.5 Вопросы к защите практической работы №5
- •6.1 Теоретические сведения к практической работе №6
- •6.1.1 Математическое ожидание дискретной случайной величины
- •6.1.2 Свойства математического ожидания
- •6.1.3 Дисперсия дискретной случайной величины
- •6.1.4 Свойства дисперсии
- •6.1.5 Среднее квадратическое отклонение дискретной случайной величины
- •6.1.6 Мода и медиана дискретной случайной величины
- •6.2 Ход работы
- •6.3 Содержание отчета
- •6.4 Варианты заданий для самостоятельной работы
- •6.5 Вопросы к защите практической работы №6
- •7.1 Теоретические сведения к практической работе №7
- •7.1.1 Биноминальное распределение вероятностей
- •7.1.2 Распределение Пуассона
- •7.1.3 Геометрическое распределение вероятностей
- •7.1.4 Непрерывная случайная величина (нсв)
- •7.1.5 Равномерно распределённая нсв
- •7.2 Ход работы
- •7.3 Содержание отчета
- •7.4 Варианты заданий для самостоятельной работы
- •7.5 Вопросы к защите практической работы №7
- •8.1 Теоретические сведения к практической работе №8
- •8.1.1 Функция плотности нсв
- •8.1.2 Свойства плотности распределения
- •8.1.3 Числовые характеристики непрерывных случайных величин
- •8.2 Ход работы
- •8.3 Содержание отчета
- •8.4 Варианты заданий для самостоятельной работы
- •8.5 Вопросы к защите практической работы №8
- •9.1 Теоретические сведения к практической работе №9
- •9.1.1 Нормальный закон распределения.
- •9.1.2 Функция Лапласа
- •9.1.3 Показательное распределение
- •9.1.4 Показательный закон надежности
- •9.2 Ход работы
- •9.3 Содержание отчета
- •9.4 Варианты заданий для самостоятельной работы
- •9.5 Вопросы к защите практической работы №9
- •10.1 Теоретические сведения к практической работе №10
- •10.1.1 Генеральная и выборочная совокупности
- •10.1.2 Повторная и бесповторная выборки.
- •10.1.3 Способы отбора
- •10.1.4 Статистическое распределение выборки
- •10.1.5 Эмпирическая функция распределения
- •10.1.6 Полигон и гистограмма
- •10.1.7 Статистические оценки параметров распределения
- •10.1.8 Несмещенные, эффективные и состоятельные оценки
- •10.1.9 Генеральная и выборочная средняя
- •10.1.10 Генеральная и выборочная дисперсия
- •10.1.11 Точность оценки, надёжность. Доверительный интервал
- •10.1.12 Доверительные интервалы для оценки математического ожидания нормального распределения
- •10.1.13 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •10.1.14 Характеристики вариационного ряда
- •10.2 Ход работы
- •10.3 Содержание отчета
- •10.4 Варианты заданий для самостоятельной работы
- •10.5 Вопросы к защите практической работы №10
- •Список использованных источников
- •Приложение а (обязательное)
- •Приложение б (обязательное)
- •Приложение в (обязательное)
- •Приложение г (обязательное)
4.1.3 Интегральная теорема Лапласа
Вновь
предположим, что производится n
испытаний, в каждом из которых вероятность
появления события А постоянна и равна
р (0 < р < 1). Как вычислить вероятность
того, что событие А появится в n
испытаниях не менее
и не более
раз (для краткости будем говорить «от
до
раз»)? На этот вопрос отвечает интегральная
теорема Лапласа, которую мы приводим
ниже.
Интегральная
теорема Лапласа.
Если вероятность
р наступления события А в каждом испытании
постоянна и отлична от нуля и единицы,
то вероятность
того, что событие А появится в n
испытаниях от
до
раз, приближенно равна определенному
интегралу
,
(18)
где
;
.
При
решении задач, требующих применения
интегральной теоремы Лапласа, пользуются
специальными таблицами, так как
неопределенный интеграл
не выражается через элементарные
функции. Таблица для функции Ф(х) приведена
в приложении (приложение Б). В таблице
даны значения функции Ф(х) для положительных
значений х и для х=0; для х<0 пользуются
той же таблицей (функция Ф(х) нечетна,
т. е. Ф(-х)=-Ф(х)). В таблице приведены
значения интеграла лишь до х = 5, так как
для х>5 можно принять Ф(х)=0,5. Функцию
Ф(х) часто называют функцией Лапласа.
Итак, вероятность того, что событие А появится в n независимых испытаниях от до раз, равна
,
(19)
где ;
.
4.2 Примеры решения задач к практической работе №4
Пример 1. Вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р=0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.
Решение: Вероятность нормального расхода электроэнергии в продолжение каждых из 6 суток постоянна и равна р = 0,75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q=1-р=1-0,75=0,25.
Искомая вероятность по формуле Бернулли (15) равна
.
Ответ:
Вероятность того, что в ближайшие 6 суток
расход электроэнергии в течение 4 суток
не превысит нормы, равна
.
Пример 2. Найти вероятность того, что событие А наступит ровно 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.
Решение: По условию задачи n=400; k=80; р=0,2; q=0,8. Воспользуемся локальной формулой Лапласа (18):
.
Вычислим определяемое данными задачи значение х:
.
По таблице приложения А находим
.
Искомая вероятность
.
Ответ:
Вероятность того, что событие А наступит
ровно 80 раз в 400 испытаниях, равна
.
Пример 3. Вероятность того, что деталь не прошла проверку ОТК, равна р=0,2. Найти вероятность того, что среди 400 случайно отобранных деталей окажется непроверенных от 70 до 100 деталей.
Решение:
По условию задачи р=0,2; q=0,8;
n=400;
=70;
=100.
Воспользуемся интегральной теоремой
Лапласа:
.
Вычислим нижний и верхний пределы интегрирования
,
.
Таким образом, применяя формулу (20) имеем
.
По таблице приложения Б находим:
Ф(2,5)=0,4938,
Ф(1,25)=0,3944.
Искомая вероятность
.
Ответ:
Вероятность
того, что среди 400 случайно отобранных
деталей окажется непроверенных от 70 до
100 деталей, равна
.
