Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
metodichka_terver (1).doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.02 Mб
Скачать

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Оренбургский государственный университет»

Колледж электроники и бизнеса ОГУ

Кафедра физико-математических дисциплин

Е.Ю.Каплина, М.Г.Таспаева

Теория вероятностей и математическая статистика

Методические указания

к практическим работам

Рекомендовано к изданию Редакционно-издательским советом

государственного образовательного учреждения высшего

Профессионального образования «Оренбургский государственный

университет»

Оренбург

2012

УДК 519.21 (075.32)

ББК 22.171. я73

К 95

Рецензент – преподаватель кафедры информационных технологий П.Н.Шалыминов

Каплина Е.Ю., Таспаева М.Г.

К 95 Теория вероятностей и математическая статистика: методические

указания к практическим работам ⁄ Е.Ю.Каплина, М.Г.Таспаева;

Оренбургский гос. ун-т. – Оренбург : ОГУ, 2012. – 107 с.

В методических указаниях предоставлены необходимые теоретические сведения и формулы, даны решения задач, и вопросы к защите практических работ, помещены задачи для самостоятельного решения.

Методические указания предназначены для выполнения практических работ, обеспечивающих учебный процесс по дисциплине «Теория вероятностей и математическая статистика» в колледже электроники и бизнеса ГОУ ОГУ для студентов 3 курса в 5 семестре специальности 230105 «программное обеспечение вычислительной техники и автоматизированных систем» очной формы обучения, студентов 2 курса 4 семестра специальностей 230115 «программирование в компьютерных системах» очной формы обучения и 230113 «компьютерные системы и комплексы» очной формы обучения.

УДК 519.21 (075.32)

ББК 22.171. я73

© Каплина Е.Ю., Таспаева М.Г., 2012

© ОГУ, 2012

Содержание

Введение……………………………………………………………………………...

8

Рекомендации по выполнению и оформлению практических работ……………..

9

Практическая работа №1. Решение комбинаторных задач………………………..

10

1.1.Теоретические сведения к практической работе №1………………………….

11

1.2.Примеры решения задач к практической работе №1………………………….

11

1.3.Ход работы……………………………………………………………………….

14

1.4.Содержание отчёта……………………………………………………………….

14

1.5.Варианты заданий для самостоятельной работы………………………………

15

1.6.Вопросы к защите практической работы №1…………………………………..

17

Практическая работа №2. Вычисление вероятностей событий по классической формуле определения вероятности…………………………………………………

17

2.1.Теоретические сведения к практической работе №2…………………………

17

2.1.1.Случайные события……………………………………………………………

17

2.1.2.Классическое определение вероятности……………………………………

18

2.1.3.Относительная частота события…………………………………………….

19

2.1.4.Статистическая и геометрическая вероятности…………………………….

19

2.2.Примеры решения задач к практической работе №2………………………..

20

2.3.Ход работы……………………………………………………………………..

22

2.4.Содержание отчёта……………………………………………………………..

22

2.5.Варианты заданий для самостоятельной работы……………………………

22

2.6.Вопосы к защите практической работы №2…………………………………

24

Практическая работа №3. Вычисление вероятностей сложных событий……..

24

3.1.Теоретические сведения к практической работе №3…………………………

25

3.1.1.Теорема сложения вероятностей несовместных событий………………….

25

3.1.2.Противоположные события………………………………………………….

25

3.1.3.Теорема умножения вероятностей………………………………………….

26

3.1.4.Вероятность появления хотя бы одного события………………………….

26

3.1.5.Формула полной вероятности………………………………………………..

27

3.1.6.Формулы Байеса………………………………………………………………

27

3.2.Примеры решения задач к практической работе №3……………………….

28

3.3.Ход работы……………………………………………………………………….

34

3.4.Содержание отчёта………………………………………………………………

34

3.5.Варианты заданий для самостоятельной работы…………………………….

34

3.6.Вопросы к защите практической работы №3………………………………….

36

Практическая работа №4.Вычисление вероятностей событий в схеме Бернулли

37

4.1.Теоретические сведения к практической работе №4…………………………

37

4.1.1.Формула Бернулли……………………………………………………………

37

4.1.2.Локальная теорема Лапласа…………………………………………………

37

4.1.3.Интегральная теорема Лапласа……………………………………………..

39

4.2.Примеры решения задач к практической работе №4………………………..

40

4.3.Ход работы………………………………………………………………………

42

4.4.Содержание отчёта………………………………………………………………

42

4.5.Варианты заданий для самостоятельной работы……………………………

42

4.6.Вопросы к защите практической работы №4…………………………………

44

Практическая работа №5. Решение задач на запись ДСВ………………………

44

5.1.Теоретические сведения к практической работе №5.………………………..

44

5.1.1.Случайная величина………………………………………………………….

44

5.1.2.Дискретная случайная величина……………………………………………..

45

5.1.3.Независимые случайные величины………………………………………….

47

5.1.4.Функция распределения……………………………………………………….

47

5.2.Ход работы………………………………………………………………………

49

5.3.Содержание отчёта……………………………………………………………..

50

5.4.Варианты заданий для самостоятельной работы……………………………

50

5.5.Вопросы к защите практической работы №5…………………………………

52

Практическая работа №6. Вычисление характеристик ДСВ…………………….

53

6.1.Теоретические сведения к практической работе №6…………………………

53

6.1.1.Математическое ожидание дискретной случайной величины…………….

53

6.1.2.Свайства математического ожидания……………………………………….

53

6.1.3.Дисперсия дискретной случайной величины……………………………….

54

6.1.4.Свойства дисперсии…………………………………………………………..

55

6.1.5.Среднее квадратическое отклонение дискретной случайной величины….

56

6.1.6.Мода и медиана дискретной случайной величины…………………………

56

6.2.Ход работы………………………………………………………………………

56

6.3.Содержание отчёта……………………………………………………………..

56

6.4.Варианты заданий для самостоятельной работы……………………………..

57

6.5.Вопросы к защите практической работы №6…………………………………

58

Практическая работа №7. Решение задач на биноминальное распределение, распределение Пуассона, геометрическое распределение вероятностей и равномерно распределённую НСВ…………………………………………………

58

7.1.Теоретические сведения к практической работе №7………………………….

59

7.1.1.Биноминальное распределение вероятностей………………………………

59

7.1.2.Распределение Пуассона………………………………………………………

60

7.1.3.Геометрическое распределение вероятностей………………………………

61

7.1.4.Непрерывная случайная величина (НСВ)…………………………………..

62

7.1.5.Равномерно распределённая НСВ…………………………………………..

63

7.2.Ход работы………………………………………………………………………

64

7.3.Содержание отчёта………………………………………………………………

64

7.4.Варианты заданий для самостоятельной работы…………………………….

65

7.5.Вопросы к защите практической работы №7…………………………………

66

Практическая работа №8. Вычисление вероятностей и нахождение характеристик для НСВ с помощью функции плотности и интегральной функции распределения……………………………………………………………..

67

8.1.Теоретические сведения к практической работе №8……………………….

67

8.1.1.Функция плотности НСВ……………………………………………………..

67

8.1.2.Свойства плотности распределения………………………………………….

68

8.1.3.Числовые характеристики НСВ………………………………………………

70

8.2.Ход работы………………………………………………………………………

72

8.3.Содержание отчёта………………………………………………………………

72

8.4.Варианты заданий для самостоятельной работы……………………………

72

8.5.Вопросы к защите практической работы №8…………………………………

75

Практическая работа №9. Вычисление вероятностей для нормально распределённой величины; вычисление вероятностей и нахождение характеристик для показательного распределения величины……………………

75

9.1.Теоретические сведения к практической работе №9……………………….

75

9.1.1.Нормальный закон распределения……………………………………………

75

9.1.2.Функция Лапласа……………………………………………………………..

77

9.1.3.Показательное распределение……………………………………………….

79

9.1.4.Показательный закон надёжности……………………………………………

80

9.2.Ход работы………………………………………………………………………

81

9.3.Содержание отчёта………………………………………………………………

81

9.4.Варианты заданий для самостоятельной работы…………………………….

82

9.5.Вопросы к защите практической работы №9…………………………………

84

Практическая работа №10. Элементы математической статистики……………..

85

10.1.Теоретические сведения к практической работе №10……………………..

85

10.1.1.Генеральная и выборочная совокупности…………………………………

85

10.1.2.Повторная и бесповторная выборки……………………………………….

86

10.1.3.Способы отбора……………………………………………………………..

87

10.1.4.Статистическое распределение выборки…………………………………..

88

10.1.5.Эмпирическая функция распределения……………………………………

89

10.1.6.Полигон и гистограмма……………………………………………………..

89

10.1.7.Статистические оценки параметров распределения………………………

90

10.1.8.Несмещённая, эффективная и состоятельная оценки……………………..

91

10.1.9.Генеральная и выборочная средняя………………………………………..

92

10.1.10.Генеральная и выборочная дисперсия……………………………………

92

10.1.11.Точность оценки, надёжность, доверительный интервал………………

95

10.1.12.Доверительные интервалы для оценки математического ожидания нормального распределения………………………………………………………...

96

10.1.13.Доверительные интервалы для оценки среднего квадратического отклонения σ нормального распределения………………………………………..

98

10.1.14.Характеристики вариационного ряда…………………………………….

98

10.2.Ход работы…………………………………………………………………….

99

10.3.Содержание отчёта…………………………………………………………….

100

10.4.Варианты заданий для самостоятельной работы……………………………

100

10.5.Вопросы к защите практической работы №10………………………………

102

Список использованных источников………………………………………………

103

Приложение А………………………………………………………………………..

104

Приложение Б………………………………………………………………………...

105

Приложение В……………………………………………………………………….

106

Приложение Г……………………………………………………………………….

107