
- •Содержание
- •История развития и классификация эвм (Лекция 1) Понятие архитектуры эвм
- •Классификация эвм
- •История развития эвм
- •Универсальные и управляющие эвм
- •Программное обеспечение
- •Архитектура системных плат (Лекция 2)
- •Шины ввода-вывода (xt, isa, eisa, mca, vesa, pci).
- •Сравнение и характеристики шин.
- •Основные микросхемы ibm pc
- •Микропроцессоры (Лекция 3)
- •Классификация процессоров
- •Общая организация современного микропроцессора
- •Исполнение процессорами инструкций x86 и x64 (Лекция 4) Кэш инструкций
- •Предсказание переходов
- •Исполнение инструкций
- •Процессоры Intel Pentium III, Pentium m и Core Duo
- •Внеочередное исполнение операций, функциональные устройства
- •Система прерываний (Лекция 5) Организация обработки прерываний в эвм
- •Обработка прерываний в персональной эвм.
- •Память (Лекция 6) Определения
- •Система управления памятью
- •Память. Микросхемы sdram (Лекция 7). Организация и принципы работы.
- •Физическая организация
- •Организация модулей памяти sdram
- •Микросхема spd
- •Тайминги памяти
- •Соотношения между таймингами
- •Схемы таймингов
- •Задержки командного интерфейса
- •Ddr/ddr2 sdram: Отличия от sdr sdram
- •Накопители информации. (Лекция 8) Эволюция носителей информации.
- •Управление распределением диска.
- •Структура таблицы разделов
- •Периферийные устройства (Лекция 9) Kлaвиaтуpa и управление клавиатурой
- •Сводная таблица скан-кодов
- •Клавиши пишущей машинки
- •Cвoднaя тaблицa кoдoв ascii
- •Сводная таблица расширенных кодов.
- •Визуализация данных (Лекция 10) Устройство видеомонитора.
- •Эволюция видеоадаптеров
- •Основа архитектуры видеоадаптеров
- •Установка атрибутов/цветов символов.
- •Управление курсором.
- •Ввод/вывод. (Лекция 11)
- •Особенности pio и dma
- •Доступ к последовательному порту.
- •Программирование микросхемы uart 8250.
- •Инициализация последовательного порта.
- •Установка текущего коммуникационного порта.
- •Инициализация и управление модемом.
- •Печатающие устройства. Принтеры. (Лекция 12) Классификация печатающих устройств
- •Управление работой принтера.
- •Посылка данных на принтер.
- •Параллельные вычислительные процессы и системы (Лекция 13) Виды параллелизма
- •Реализация параллельных систем
- •Нейровычислительные системы.
- •Сложности использования параллельных систем
- •Программирование параллельных систем
- •Сети эвм (Лекция 14) Организация сети
- •Характеристики стеков коммуникационных протоколов
- •Стек tcp/ip
- •Типовой состав оборудования локальной сети (Лекция 15)
- •Кабельная система
- •Сетевые адаптеры
- •Повторители и концентраторы
- •Мосты и коммутаторы
- •Маршрутизаторы
- •Список литературы
- •Список тем рефератов по курсу «Архитектура эвм»
- •Список вопросов к экзамену по предмету «Архитектура эвм».
Особенности pio и dma
В современных компьютерах используются два основных способа организации передачи данных между памятью и периферийными устройствами: программно-управляемая передача (PIO, Programmed Input-Output) и прямой доступ к памяти (DMA, Direct Memory Access).
Программно-управляемая передача данных осуществляется при непосредственном участии и под управлением процессора. Например, при пересылке блока данных из периферийного устройства в оперативную память процессор должен выполнить следующую последовательность шагов:
сформировать начальный адрес области обмена в оперативной памяти;
занести длину передаваемого массива данных в один из внутренних регистров, который будет играть роль счетчика;
выдать команду чтения информации с устройства; при этом на шину адреса от процессора выдается адрес устройства, на шину управления – сигнал чтения данных, а считанные данные заносятся во внутренний регистр процессора;
выдать команду записи информации в оперативную память; при этом на шину адреса от процессора выдается адрес ячейки оперативной памяти, на шину управления – сигнал записи данных в память, а на шину данных выставляются данные из регистра процессора, в который они были помещены при чтении с устройства;
модифицировать регистр, содержащий адрес оперативной памяти;
уменьшить счетчик длины массива на длину переданных данных;
если переданы не все данные, то повторить шаги 3-6, в противном случае закончить обмен.
Как видно, программно-управляемый обмен ведет к нерациональному использованию мощности микропроцессора, который вынужден выполнять большое количество относительно простых операций, приостанавливая работу над основной программой. При этом действия, связанные с обращением к оперативной памяти и к периферийному устройству, обычно требуют удлиненного цикла работы микропроцессора из-за их более медленной по сравнению с микропроцессором работы, что приводит к еще более существенным потерям производительности.
Альтернативой программно-управляемому обмену служит прямой доступ к памяти – способ быстродействующего подключения внешнего устройства, при котором оно обращается к оперативной памяти, не прерывая работы процессора. Такой обмен происходит под управлением отдельного устройства – контроллера DMA (или КПДП).
Рис. 13. Обмен данными в режиме прямого доступа к памяти
Перед началом работы контроллер DMA необходимо инициализировать: занести начальный адрес области памяти, с которой производится обмен, и длину передаваемого массива данных. В дальнейшем по сигналу запроса прямого доступа контроллер фактически является посредником между устройством и памятью – выполняет все те действия, которые обеспечивал микропроцессор при программно-управляемой передаче.
Последовательность действий контроллера DMA при запросе на прямой доступ к памяти со стороны устройства ввода-вывода следующая:
Принять запрос на DMA (сигнал DRQ) от устройства.
Сформировать запрос к процессору на захват шин (сигнал HRQ).
Принять сигнал от процессора (HLDA), подтверждающий факт перевода микропроцессором своих шин в третье состояние.
Сформировать сигнал, сообщающий устройству ввода-вывода о начале выполнения циклов прямого доступа к памяти (DACK).
Сформировать на шине адреса компьютера адрес ячейки памяти, предназначенной для обмена.
Выработать сигналы, обеспечивающие управление обменом (IOR, MW для передачи данных из устройства в оперативную память и IOW, MR для передачи данных из оперативной памяти на устройство).
Уменьшить значение в счетчике данных на длину переданных данных.
Проверить условие окончания сеанса прямого доступа (обнуление счетчика данных, снятие сигнала запроса на DMA). Если условие окончания не выполнено, изменить адрес в регистре текущего адреса на длину переданных данных и повторить шаги 5-8.
Прямой доступ к памяти позволяет осуществлять параллельно во времени выполнение процессором программы и обмен данными между периферийным устройством и оперативной памятью.
Режим DMA для шины ISA.
DMA-контроллер шины ISA имеет 16 каналов DMA, из которых 7 могут использоваться процессором. Каждому каналу DMA присвоен 16-битный регистр адреса и 16-битный регистр счётчика. Для начала передачи данных на контроллере выставляются значения адреса в памяти и счётчика данных, а также действие (чтение/запись). Затем контроллер передает устройству сигнал начала процедуры передачи, по окончании которой посылает на процессор прерывание. Контроллер исполняет роль посредника при передаче.
Режим DMA для шины PCI.
В отличие от шины ISA, архитектура шины PCI не предусматривает отдельного контроллера DMA, и при этом любое устройство, подключённое к шине PCI, может послать запрос на получение статуса «мастера шины» (Bus Master) и возможности считывать/записывать значения в память напрямую.
Когда PCI-устройство запрашивает у контроллера шины данных полный доступ, контроллер (обычно это южный мост в системных платах) проверит возможность предоставления доступа (только одно устройство может иметь статус Bus Master). Когда устройство получает доступ, оно передает команды считывания/записи на шину PCI, а контроллер в свою очередь переводит поток данных на контроллер доступа к памяти.
PIO обычно используется в ЭВМ для операций ввода-вывода отдельных байт (слов), которые выполняются быстрее, чем при DMA, так как исключаются потери времени на инициализацию контроллера DMA, а в качестве основного способа осуществления операций ввода-вывода используют DMA. Например, в современных компьютерах обмен между накопителями на магнитных дисках и оперативной памятью происходит в режиме прямого доступа.
Организация ЭВМ на основе общей шины является сдерживающим фактором для повышения производительности компьютера. Следует отметить, что даже при использовании прямого доступа к памяти процессор полностью не освобождается от управления операциями ввода-вывода. Он обеспечивает инициализацию контроллера ПДП, а также взаимодействует с ним по некоторым управляющим линиям. Более того, во время операции передачи данных интерфейс оказывается занятым, а связь процессора с оперативной памятью – блокированной.
Это существенно сказывается на эффективности работы ЭВМ, особенно в тех случаях, когда в вычислительной системе используется большое количество высокоскоростных внешних устройств. Для решения этой проблемы в состав высокопроизводительных компьютеров иногда включают специализированные процессоры ввода-вывода, способные полностью разгрузить основной процессор от управления операциями обмена с внешними устройствами.