
- •Оглавление
- •ТеориЯ электрических цепей часть 1
- •1. Введение
- •1. Представление о дисциплине тэц (отц)
- •2. Федеральный Образовательный стандарт дисциплины тэц
- •4. Метод контурных токов.
- •2. Основные Понятия и определения в тэц
- •2.1. Классификация цепей, режимы их работы
- •2.2. Основные электрические величины
- •I(t) – мгновенное значение тока, меняющегося во времени, I – постоянный ток
- •2.3. Основные элементы эц
- •Пассивные элементы
- •Резистивный элемент (резистор)
- •Индуктивный элемент (индуктивность)
- •Емкостный элемент (емкость)
- •2.4. Модель и схема эц
- •Р еальный резистор
- •2) Катушка индуктивности - аналогично рассматривают и процессы здесь.
- •3 ) Конденсатор
- •Схемы замещения реальных источников электрической энергии
- •2.5. Основные топологические понятия и параметры эц
- •2.6. Законы Кирхгофа
- •3. Анализ режима гармонического тока в линейных электрических цепях
- •3.1. Основные понятия гармонического тока и напряжения
- •3.2. Оценка гармонического тока (напряжения)
- •3.3. Векторное и комплексное представление гармонических функций
- •1) Можно графически, но это трудоемко и неудобно.
- •2) Можно применить векторную математику.
- •§4. Законы Кирхгофа в комплексной форме
- •§5. Анализ режима гармонического тока в пассивных элементах
- •§6. Анализ последовательных r, l, c – цепей при гармоническом
- •2. Анализ последовательной rc-цепи
- •Анализ последовательной rlc-цепи при гармоническом воздействии
- •. Здесь .
- •C учетом rk
- •4. Основные принципы и теоремы и методы расчета в теории цепей §1. Метод токов ветвей (мтв)
- •§2. Принцип и метод наложения в теории цепей.
- •1) Оставляем только источник е1, остальные исключаем (источник тока- разрыв, источники эдс – перемычка)
- •3) Аналогично
- •§3. Метод контурных токов
- •1. Недостатки мтв
- •2. Основы мкт
- •3. Определение числа уравнений и выбор контуров для мкт
- •4. Пример использования
- •6. Применение мкт
- •§4. Метод узловых напряжений (мун)
- •1. Основы мун
- •4. Стандартная общая форма записи уравнений по мун (со сменой знаков)
- •§5. Принцип дуальности в тэц
- •1. Введение
- •1 Закон Кирхгофа 2 закон Кирхгофа
- •§6. Теоремы об эквивалентных источниках или генераторах (Теорема об автономном двухполюснике)
- •1)В первом случае получим вместо активной цепи пассивизированную цепь (без внутренних источников):
- •2) Поставим задачу, чтобы .
- •Для нахождения размыкают ветвь и находят , заменяя в лаэц источники напряжения – перемычками, источники тока – разрывом.
- •Примеры Применим мэин для нахождения тока i5
- •Рассмотрим схему для нахождения Uxx
- •, Тогда Расчет электрических цепей с управляемыми источниками
- •7. Мощность в цепи переменного тока
- •4. Мощность на участке электрической цепи
- •5. Комплексная мощность
- •6. Баланс мощностей
- •7. Условия передачи максимума активной мощности источника в нагрузку
- •Параллельные rlc - цепи
- •5. Электрические цепи с взаимно индуктивными связями и методы их расчета
- •§1. Основные понятия о взаимной индукции
- •Да, если токи постоянные и проводники неподвижны.
- •Можно заэкранировать проводники.
- •Можно разместить проводники перпендикулярно.
- •§2. Последовательное и параллельное соединения индуктивно связанных элементов
- •1. Последовательное соединение
- •2. Параллельное соединение
- •§3. Электрический трансформатор
- •1. Идеальный трансформатор
- •2. Уравнения и схемы замещения реального трансформатора (двухобмоточного, без ферромагнитного сердечника)
- •3. Входное сопротивление реального трансформатора
- •§4. Развязка индуктивных (магнитных связей)
- •Составление т-образной схемы
- •§5. Автотрансформатор
- •§6. Общие методы расчета цепей с взаимными индуктивными элементами
- •6. Резонансные явления и колебательные контуры в электрических цепях
- •§1. Понятие о резонансе в эц
- •§2. Последовательный колебательный контур
- •2. Частотные характеристики последовательного контура
- •4. Виды расстроек колебательного контура
- •5. Комплексные передаточные функции (комплексные частотные характеристики)
- •6. Влияние внешних сопротивлений на избирательность контура (на добротность и полосу пропускания)
- •1) Влияние внутреннего сопротивления источника
- •2) Влияние сопротивления нагрузки
- •§3. Параллельный колебательный контур
- •1. Идеализированный контур
- •Реальный параллельный контур
- •3. Частотные зависимости
- •Графики частотных зависимостей напряжения на параллельном контуре
- •§4. Сложные колебательные контуры
- •1. Контур с двумя индуктивностями
- •2. Контур с двумя емкостями
- •§5. Связанные колебательные контуры
- •Анализ частотных характеристик связанных контуров
- •Слабая связь . В этом случае в знаменателе можно пренебречь величиной (kQ)2 по сравнению с единицей .
- •3. Практическое применение
- •7. Трехфазные электрические цепи
- •Схемы соединения трехфазных систем
- •Соединение в звезду
- •С оединение в треугольник
- •8. Нелинейные электрические цепи
- •Нелинейные резистивные элементы (нрэ)
- •1) Статическим сопротивлением в некоторой точке
- •2 ) Дифференциальным сопротивлением .
- •2. Расчет цепей с нелинейными резистивными элементами
- •1) Последовательное соединение
- •2) Параллельное соединение
- •4) Сложное соединение с одним нелинейным элементом
- •Аппроксимация характеристик нелинейных элементов
Да, если токи постоянные и проводники неподвижны.
Можно заэкранировать проводники.
Можно разместить проводники перпендикулярно.
При расчете электрических цепей изображают схему замещения цепи, где направление обмоток и расположение их в пространстве конкретно не показывают и определить тип включения невозможно.
В связи с этим вводят специальное понятие одноименных или однополярных зажимов индуктивно связанных элементов, которые специальным знаком указываются на схемах, например точкой. Если выбрать токи, одинаково протекающие относительно одноименных зажимов, то тип включения будет согласным. На примере одноименные зажимы показаны точками.
Расчет взаимной индуктивности – довольно сложная задача, обычно ей занимаются в электротехнике. Для этого используют понятие коэффициента связи.
§2. Последовательное и параллельное соединения индуктивно связанных элементов
1. Последовательное соединение
Изобразим схему замещения последовательно магнитно связанных элементов. Здесь может быть 2 варианта расположения одноименных зажимов – согласное (одноименные зажимы с одной стороны обмоток) и встречное ( с разных сторон).
-
эквивалентная (общая) индуктивность.
При согласном включении используется
знак +, а при встречном знак -.
2. Параллельное соединение
И
зобразим
схему замещения параллельно соединенных
элементов. Будем рассматривать действие
гармонической ЭДС. Соответственно все
уравнения можно записывать в комплексной
форме. Составим уравнения: одно по
первому закону Кирхгофа и два – по
второму с учетом влияния взаимной
индукции (в комплексной форме).
-
сопротивление магнитной связи.
Математически решая, можно получить токи. Результат расчетов при согласном и встречном включениях различен. Он зависит от положения одноименного зажима.
§3. Электрический трансформатор
Электрический трансформатор – это устройство, которое трансформирует (преобразует) электрическое напряжение, ток или сопротивление с помощью явления взаимной индукции. ЭТ содержит двое или более индуктивно-связанных обмоток, может иметь сердечник из магнитного или немагнитного материала.
1. Идеальный трансформатор
Здесь n – коэффициент трансформации.
Для идеального трансформатора всегда выполняется условие:
-
постоянное число.
Говорят, что трансформатор трансформирует напряжение в n раз, а ток в 1/n. Мощность не меняется: на входе и на выходе она одинакова
.
Сопротивление нагрузки трансформируется
в 1/n2
раз. Реальные трансформаторы могут
приближаться по свойствам к идеальным.
2. Уравнения и схемы замещения реального трансформатора (двухобмоточного, без ферромагнитного сердечника)
Уравнения составляются по второму закону Кирхгофа:
Здесь при указанных одноименных зажимах сверху индуктивностей и направлений токов получается встречное включение (токи протекают противоположно относительно исходного положения точек). Знак в скобках соответствует нижнему положению второго одноименного зажима тоже показанного в скобках и тогда получится согласное включение.
Рассмотрим различные режимы работы ЭТ:
1)
- холостой ход.
,
.
Если хороший
трансформатор, то
и можно принять R1=0.
.
У трансформатора близкого к идеальному
kсв=1.
. Величина
индуктивностей пропорциональны квадрату
числа витков обмоток.
.
Чтобы получить побольше индуктивности,
надо мотать больше витков. Тогда мы
приближаемся к идеальному трансформатору.
2)
- режим короткого замыкания.
По принципу
дуальности
.
Можем сразу получить:
.
Технически
различают трансформаторы напряжения
(они хорошо трансформируют напряжение,
N
– большое,
должно быть большим) и трансформаторы
тока (они хорошо трансформируют ток, N
– мало,
должно быть небольшим).
Чаще используются
трансформаторы напряжения. Есть еще
трансформаторы сопротивления (N
– среднее, используются для согласования
сопротивления нагрузки и сопротивления
источника сигнала)
.