- •22. Магни́тный пото́к — поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности
- •23. Закон полного тока это закон, связывающий циркуляцию вектора напряженности магнитного поля и ток.
- •26. По характеру магнитных свойств все вещества можно разделить на две группы:
- •28. Приращение плотности энергии магнитного поля равно:
- •29. Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.
- •32. Взаимная индукция. Коэффициент связи
- •37. Активное сопротивление - это сопротивление цепи переменному току вызывающее безвозвратные потери энергии переменного тока.
- •47. Резонанс напряжений - резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.
- •48. Резонанс токов — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.
26. По характеру магнитных свойств все вещества можно разделить на две группы:
ферромагнитные вещества; магнитная проницаемость которых велика. К ним принадлежат железо, сталь, чугун, никель, кобальт и некоторые сплавы (алюминия с никелем и др.);
немагнитные вещества, магнитная проницаемость которых незначительно отличается от магнитной проницаемости пустоты. К ним относятся алюминий, медь, олово, ртуть, серебро, дерево, вода и др.
Ферромагнитные материалы имеют очень важное значение в электротехнике и радиотехнике. Эти материалы (в основном сталь) благодаря большой магнитной проницаемости ; получили широкое применение в различных электромагнитах, электрических генераторах, электродвигателях, трансформаторах, электроизмерительных приборах, реле и т. д.
Зависимость между В и Н у ферромагнитных материалов обычно выражается графически в виде так называемой кривой намагничивания. Для построения кривой по горизонтальной оси обычно откладывают напряженность магнитного поля Н в а/м, а/см, а по вертикальной оси откладывают величину магнитной индукции В в вб/м2, вб/м2 или гауссах.
увеличение напряженности Н магнитная индукция В сначала быстро возрастает, затем в месте изгиба кривой скорость роста В уменьшается и, наконец, за изгибом кривая незначительно поднимается вверх, переходя в прямую линию. Последний участок кривой характеризует состояние магнитного насыщения материала.
Из кривой намагничивания видно, что отношение
является
постоянной величиной; с увеличением H
и В магнитная проницаемость уменьшается.
Магнитная проницаемость ферромагнитных тел зависит также от химического состава металла, его предварительной термической и механической обработки, температуры металла. Кроме того, магнитная проницаемость этих тел зависит от их формы и геометрических размеров.
Кривые намагничивания снимаются опытным путем отдельно для каждого материала и каждого сорта этого материала.
Кривая начального намагничивания ( а) и безгисте резисная кривая намагничивания ( б).
Наиб крутой участок КПН (3 )соответствует макс. восприимчивости и связан с необратимыми смещениями доменных границ. В области приближения к насыщению (4 )осн. роль играют процессы вращения Ms к направлению намагничивающего поля. Наконец, участок 5 характеризуется слабым ростом намагниченности и соответствует парапроцессу.
II. При циклическом изменении магн. поля между крайними значениями H1 и H2 кривые M(H )сначала несколько изменяются от цикла к циклу (см. Магнитная аккомодация), но постепенно становятся стабильными. Их наз. кривыми цикличного пе-ремагничивания или петлями гистерезиса магнитного. При H1 = -H2 петля гистерезиса симметрична, в других случаях - асимметрична. Наиболее симметричная петля гистерезиса наз. предельной и является важной характеристикой магнитных материалов.
III. Безгистерезисная (идеальная) кривая H. изображает зависимость M(H )для таких состояний, к-рые при каждом значении H являются наиб. устойчивыми, т. е. обладают наим. свободной энергией. Эти состояния могут быть получены в результате наложения на пост. поле H перем. магн. поля с убывающей до нуля амплитудой.
IV. Основная (коммутационная) кривая H.- геом. место вершин симметричных петель гистерезиса. Основная и безгистерезисная кривые H., в отличие от КПН, фиксируют только избранные магн. состояния, не показывая действительных процессов H.
Если значения M и H. относятся к одному и тому же элементу объёма, то кривые M(H )не зависят от размера и формы образца и являются кривыми H. данного материала. На практике чаще всего имеют дело не с истинным значением H внутри образца, а с напряжённостью внеш. магн. поля H е. Кривые М(Н е )наз. кривым и намагничивания тела и зависят от формы последнего. В простых случаях, зная размагничивающий фактор тела, можно из кривых М(Н e )получить кривые M(H).
27. Магнитная цепь — последовательность взаимосвязанных магнетиков, по которым проходит магнитный поток.[1]
При расчётах магнитных цепей используется почти полная формальная аналогия с электрическими цепями.
В схожем математическом аппарате также присутствует закон Ома, правила Кирхгофа и другие термины и закономерности.[2]
Магнитная цепь и сопутствующий математический аппарат используется для расчётов трансформаторов, электрических машин, магнитных усилителей и т. п
Основным законом, используемым при расчетах магнитных цепей, является закон полного тока.
(9.1)
Он
формулируется следующим образом:
линейный интеграл вектора напряженности
магнитного поля по замкнутому контуру
равен алгебраической сумме токов,
охватываемых этим контуром. Если контур
интегрирования охватывает катушку с
числом витков W, через которую протекает
ток I, то алгебраическая сумма токов
,
где F - магнитодвижущая сила.
МАГНИТНОЕ СОПРОТИВЛЕНИЕ
- характеристика магнитной
цепи;М. с. Rm равно
отношению магнитодвижущей
силы F, действующей
в магн. цепи, к созданному в цепи магнитному
потоку Ф.
М. с. однородного участка магн. цепи
может быть вычислено по ф-ле
,
где l и S
- длина
и поперечное сечение участка магн.
цепи,
-
относит. магнитная
проницаемость материала
цепи,
- магнитная
постоянная. В
случае неоднородной магн. цепи (состоящей
из однородных последовательных участков
с различными l,
S,m) её М. с. равно
сумме Rm однородных
участков. Расчёт
М. с. по приведённой
ф-ле является приближённым, т. к. ф-ла не
учитывает "магнитные утечки"
(рассеяние магн. потока в окружающем
цепь пространстве), неоднородности
магн. поля в цепи, нелинейную зависимость
М. с. от поля. В перем. магн. поле М. с.-
комплексная величина, Т. к. в этом случае
m зависит от частоты эл.-магн. колебаний.
Единицей М. с. в Международной
системе единиц служит
ампер (или ампер-виток)
на вебер (А/Вб), в СГС
системе единиц-
гильберт на максвелл (Гб/Мкс);
