
- •1 Формирование и преобразование радиосигналов
- •2 Фазовый и частотный детекторы, демодулятор сигнала с комбинированной модуляцией.
- •1. Классификация радиопередающих и радиоприемных устройств.
- •2.Декодирование сигналов. Возможности надежного приема данных при соотношении сигнал/шум меньше единицы.
- •1. Структурные схемы радиопередатчиков и радиоприемников. Различие структурных схем передатчиков и приемников в зависимости от их назначения и от условий эксплуатации.
- •Особенности подвижной радиосвязи (спрс).
- •2. Способы снижения внутренних шумов входных усилителей
- •2. Зависимость спектра частот сигнала с частотной модуляцией от индекса модуляции.
- •Билет 6
- •2.Определение последовательностных устройств, их отличие от комбинацищнных
- •2 Вопрос
- •2. Демодуляторы сигналов. Амплитудный детектор и однополосный демодулятор.
- •2. Основные характеристики сигналов с частотной, фазовой и комбинированной модуляцией, схемы частотных, фазовых и комбинированных модуляторов.
- •1. Анализ возможности надежного приема сигнала в условиях сильных помех при соотношении сигнал/шум меньше единицы.
- •2. Преобразователи частоты и усилители промежуточной частоты в супергетеродинных приемниках с использованием фильтров сосредоточенной селекции и пьезокерамических фильтров.
- •1. Анализ и синтез структурных схем радиопередатчиков различного назначения и для различных условий эксплуатации. Анализ основных характеристик и параметров радиоприемных устройств.
- •2. Устройства автоматической регулировки усиления в каскадах приемников.
- •1. Автогенераторы высоких частот. Стабилизация частоты задающих генераторов передатчиков и гетеродинов приемников.
- •Анализ надежного приема сигнала в условиях сильных помех, когда соотношение сигнал/шум меньше единицы.
- •1. Модуляторы сигналов. Принципы работы амплитудного и однополосного модулятора, спектральный анализ их выходных сигналов.
- •2. Анализ плотности потока мощности электромагнитного излучения, получаемого человеком при работе с радиопередающим устройством.
- •1. Плавная и дискретная перестройка частоты генераторов. Аналоговые и цифровые синтезаторы частоты с петлей фазовой автоподстройки частоты.
- •2. Анализ характеристик шумоподобных сигналов.
- •1. Частотная и фазовая модуляция задающих генераторов передатчиков. Формирование сложных фазоманипулированных и частотно-модулированных сигналов.
- •2. Синтезаторы сетки частот в радиопередатчиках и в гетеродинах радиоприемников.
- •Устройства предварительной селекции и высокочастотные усилители.
- •Формирование и преобразование радиосигналов.
- •2. Модуляторы сигналов. Принципы работы амплитудного и однополосного модулятора, спектральный анализ их выходных сигналов.
- •1. Частотная и фазовая модуляция задающих генераторов передатчиков. Формирование сложных фазоманипулированных и частотно-модулированных сигналов.
- •2. Способы снижения внутренних шумов входных усилителей.
- •1.Классификация радиопередающих и радиоприемных устройств.
- •1.Линейные и нелинейные.
- •2.Устройства пассивного и активного типа.
- •3.Устройства автономного и неавтономного типа.
- •2. Анализ формы и спектра частот сигнала с амплитудной модуляцией.
- •1. Устройства радиосвязи с разделением по форме сигналов.
- •2. Основные характеристики сигналов с частотной, фазовой и комбинированной модуляцией, схемы частотных, фазовых и комбинированных модуляторов.
- •1. Структурные схемы радиопередатчиков и радиоприемников. Различие структурных схем передатчиков и приемников в зависимости от их назначения и от условий эксплуатации.
- •2. Устройства модуляции и кодирования сигналов в высоконадежных помехоустойчивых системах радиосвязи.
- •1.1 Формирование и преобразование радиосигналов.
- •17.1.Формирование и преобразование радиосигналов.
2 Вопрос
Амплитудно-модулированный
(АМ) сигнал в общем случае определяется
выражением
(3)
где (x)
– информационный (модулирующий) сигнал,
s(x) –
сигнал-переносчик, m
– коэффициент
модуляции. Спектр сигнала (3) можно найти
с использованием свойств преобразования
Фурье (см. разд. 1.5) в форме
(4)
где
Формирование
спектра (4) иллюстрируется на рис. 2.1 и
2.2. При гармоническом модулирующем
сигнале (рис. 2.1) его спектр, как и спектр
сигнала-переносчика, представляет собой
две дельта-функции. Свертка спектров
S(u)
и (u)
приводит к переносу спектра (u)
на более высокую (так называемую несущую)
частоту
.
Если модулирующий сигнал имеет сложную
форму и, следовательно, протяженный
спектр (рис. 2.2), образованный множеством
пар дельта-функций с различными
положениями на частотной оси, то в
результате переноса спектра на несущую
частоту
образуются соответствующие спектральные
порядки. В силу свойств частотной
симметрии преобразования Фурье можно
показать, что вся полезная информация
содержится в спектральном порядке в
окрестности частоты
.
Демодуляцию АМ сигнала осуществляют
путём выделения огибающей сигнала-переносчика
при его детектировании и фильтрации
нижних частот на выходе детектора.
Ширина полосы пропускания фильтра
должна соответствовать ширине спектра
(u)
(рис. 2.2), чтобы обеспечить минимальные
спектральные искажения восстановленного
сигнала.
Рис. 2.1. Спектр АМ сигнала с гармонической модуляцией Рис. 2.2. Спектр сложного АМ сигнала
Билет № 8
1. Применение компрессии при передаче и экспандирования (декомпрессии) при приеме сигналов. Компрессия — это второй этап создания мультимедийного объекта. Цель этого очевидна — компрессия позволяет цифровым файлам приобрести объем, совместимый с теми условиями, в которых данная информация будет использоваться. Эти условия прямо влияют на норму компрессии. Очевидно, что степень компрессии непосредственно связана с максимальной скоростью передачи и приема цифровых данных. Эти показатели достаточно высоки в компьютерах с высокоскоростными проигрывателями CD-ROM, ниже, как правило, в цифровых оптоволоконных сетях. Для сжатия информационных файлов используется достаточно много технологий. Но все они имеют две основные технические характеристики: первая — алгоритм используемой компрессии, вторая — микросхемы, которые совершают все необходимые подсчеты и манипуляции с информацией. Алгоритмы позволяют сократить объем информации до тех параметров, с которыми могут работать микросхемы. Степень сжатия колеблется от 4 до 200 раз. Как правило, чем выше степень компрессии, тем больше искажения сигнала. Совершенствование микросхем позволяет ускорить процессы компрессии / декомпрессии, улучшить качество конечной продукции. Оба направления активно развиваются в новейших технологиях информатики. Но некоторые алгоритмы и технические решения уже стали фактическими стандартами, т.к. признаны в международном масштабе. В процессе сжатия информации важно знать те требования, которые ставятся к этой информации ее пользователями. Безусловно, идеальный вариант, когда информация после декомпрессии полностью соответствует исходной. Но если такая технология стоит в десятки раз дороже той, которая позволяет быстро обрабатывать данные при определенной потере качества? Конечно, если банковские работники обмениваются информационными файлами, то небольшие, казалось бы, ошибки приведут к весьма печальным последствиям. Но если вы смотрите на экране компьютера видеофильм, то незаметные глазу искажения не доставят неудобства зрителю, но позволят сэкономить и время, и деньги.Технология компрессии данных, при которой декомпрессир-я информация полностью соответствует исходной, называют техникой уплотнения (compactage) данных. Она преобладала на начальном этапе развития информатики. Предназначена для обмена или передачи текстов или цифр. В данном случае потеря достоверности недопустима. Второе поколение техники сжатия информации (собственно компрессия /декомпрессия) предназначено для иных типов информации — звука, изображения, видео. В отличие от техники “уплотнения” она вполне допускает ухудшение качества посткомпрессионной информации. Объемы информации при этой технологии в 20 и более раз выше, чем при передаче текстовой или цифровой. Возможность снижения качества сигнала определяется технологией, в которой необходима компрессия /декомпрессия звука, видео. Например, если вы говорите по телефону, то не требуется звука качества проигрывателя аудиокомпактдисков. Конечно, можно разработать и такую технологию передачи звука на расстояние, но тогда стоимость телефонного аппарата превысит стоимость хорошего автомобиля. Если взять видеофонию, которая позволяет видеть собеседника, то уровень четкости изображения для пользователя менее важен, чем при просмотре им телевизионных программ. Поэтому тип компрессии и ее степень выбирается в зависимости от используемого оборудования и тех требований, которые ставит перед информацией ее конечный потребитель. Если при “уплотнении” с информацией успешно справлялись первые поколения ЭВМ, то при работе со звуком (тем более с видео) технология компрессии стала возможна только с появлением быстродействующих процессоров. Поэтому и мультимедиа, как тип технологий коммуникации, стали развиваться только в последнее десятилетие. Способности микропроцессоров растут весьма быстро, удваиваются каждые 18 месяцев (так называемый закон Моора). Сегодня есть технологии, позволяющие разместить более 20 миллионов транзисторов на одном микрочипе. Стандарты компресcии/декомпресcии видеоизображения Основные видео- стандарты: 1. Стандарт H.261 - разработан организацией по стандартам телекоммуникаций ITU. На практике, первый кадр в стандарте H.261 всегда представляет собой изображение стандарта JPEG, компрессированное с потерями и с высокой степенью сжатия. 2. Стандарт H.263 – это стандарт сжатия видео, предназначенный для передачи видео по каналам с довольно низкой пропускной способностью (обычно ниже 128 кбит/с). Применяется в программном обеспечении для видеоконференций.
3. Стандарт H.264 - это новый расширенный кодек, также известный как AVC и MPEG-4, часть 10.
Стандарты компресcии/декомпресcии звука
Некоторые стандарты компрессии аудиосигнала основаны на технологии оцифровки звука, называемой импульсно-кодовой модуляцией или ИКМ.
Основные аудио- стандарты:
1. Стандарт G.711 – это стандарт для аудио- компандирования, который в основном используется в телефонии.
4. Стандарт G.726 - кодек является стандартом ITU-T адаптивной импульсно-кодовой модуляции — ADPCM и описывает передачу голоса полосой в 16, 24, 32, и 40 килобит/сек.
5. Стандарт G.729 – это узкополосный речевой кодек, который применяется для эффективного цифрового представления узкополосной телефонной речи (сигнала телефонного качества).
Для всех типов кодеков справедливо правило: чем меньше плотность цифрового потока, тем больше восстановленный сигнал отличается от оригинала. Однако восстановленный сигнал гибридных кодеков обладает вполне высокими характеристиками, восстанавливается тембр речевого сигнала, его динамические характеристики, другими словами, его «узнаваемость» и «распознаваемость».