
- •Архитектура вычислительных систем. Учебное пособие.
- •Характеристики и режимы работы эвм
- •Основные характеристики эвм
- •1.2. Режимы работы эвм
- •1.2.1. Однопрограммный режим работы
- •1.2.2. Мультипрограммный режим работы
- •1.2.3. Режим пакетной обработки
- •1.2.4. Режим разделения времени
- •1.2.5. Диалоговый режим работы
- •1.2.6. Режим работы в реальном масштабе времени
- •Классификация компьютеров по областям применения
- •2.1. Персональные компьютеры и рабочие станции
- •2.3. Серверы
- •2.4. Мейнфреймы
- •2.5. Кластерные архитектуры
- •3. Организация современного пк
- •Архитектура пк на базе набор микросхем 440 lx
- •3.1. Структура системной платы на наборе микросхем 440 lx
- •3.2. Типы системных плат на чипсете 440 lx
- •4. Функциональная и структурная организация процессоров
- •4.1. Классификация процессоров (cisc и risc)
- •4.2.Принципы организации процессоров
- •4.2.1. Назначение и структура процессора
- •Структура микропроцессора
- •4.2.2. Основные регистры процессоров
- •Операционное устройство и шинный интерфейс
- •4.2.3. Способы организации управления вычислительным процессом
- •Схемный принцип управления
- •Микропрограммный принцип
- •4.2.4. Технология mmx
- •Отображение ммх-регистров на fpu-регистры
- •Влияние ммх-команд на контекст fpu
- •4.2.5. Принципы конвейерной технологии
- •Представление о работе конвейера
- •Диаграмма работы простейшего конвейера
- •4.3. Микроархитектура процессоров p5
- •Структурная схема микропроцессора Pentium
- •4.4. Микроархитектура процессоров семейства р6
- •Структурная схема микропроцессора Pentium Pro
- •Ядро и подсистемы памяти Pentium
- •Устройство выборки/декодирования
- •Структура устройства диспетчирования/выполнения
- •Устройство отката
- •Интерфейс с шиной
- •4.5. Микроархитектура процессоров семейства amd
- •Микроархитектура процессора amd-k6-2
- •Микроархитектура процессора amd Athlon
- •Рабочая схема модуля вычислений с плавающей точкой
- •Организация системной шины
- •5.Принципы организации системы прерывания программ
- •5.1. Классы сигналов прерывания
- •5.2. Распределение прерываний в пк на базе процессоров х86
- •Распределение аппаратных прерываний
- •5.3. Приоритеты прерываний
- •Временная диаграмма возможного процесса прерывания программы
- •Определение исполнение программ в системе с учетом приоритетности запросов прерывания
- •5.4. Защита от прерывания
- •Организация памяти пк
- •6.1. Иерархии памяти
- •6.2. Организация кэш-памяти
- •6.3. Организация оперативной памяти (ram)
- •6.3.1. Типы и классификация оп
- •Прямая регистровая адресация
- •6.3.2.4. Подразумеваемая адресация
- •6.3.2.5. Косвенная адресация
- •Косвенная адресация с использованием оперативной памяти
- •6.3.2.6. Косвенная регистровая адресация
- •6.3.2.7. Модификация адресов
- •Индексная адресация с использованием регистров
- •6.3.2.8. Относительная адресация
- •Относительная адресация
- •Формирование исполнительного адреса при относительной и индексной адресации
- •6.4. Организация виртуальной памяти
- •6.4.1. Страничная адресация памяти
- •Адреса при страничной адресации
- •Порядок использования таблицы страниц
- •6.4.2. Сегментация памяти
- •7. Организация ввода-вывода
- •7.2. Системные и локальные шины
- •7.3. Шины ввода/вывода
- •7.3.1. Шина agp
- •Схемы pci и agp
- •7.3.2. Шина usb
- •Топология шины usb
- •7.3.3. Шины ide и scsi
- •8. Периферийные устройства
- •Примеры устройств ввода/вывода
- •8.1. Магнитные и магнитооптические диски
2.4. Мейнфреймы
Мейнфрейм - это синоним понятия "большая универсальная ЭВМ". Мейнфреймы и до сегодняшнего дня остаются наиболее мощными (не считая суперкомпьютеров) вычислительными системами общего назначения, обеспечивающими непрерывный круглосуточный режим эксплуатации. Они могут включать один или несколько процессоров, каждый из которых, в свою очередь, может оснащаться векторными сопроцессорами (ускорителями операций с суперкомпьютерной производительностью). В нашем сознании мейнфреймы все еще ассоциируются с большими по габаритам машинами, требующими специально оборудованных помещений с системами водяного охлаждения и кондиционирования. Однако это не совсем так. Прогресс в области элементно-конструкторской базы позволил существенно сократить габариты основных устройств. Наряду со сверхмощными мейнфреймами, требующими организации двухконтурной водяной системы охлаждения, имеются менее мощные модели, для охлаждения которых достаточно принудительной воздушной вентиляции, и модели, построенные по блочно-модульному принципу и не требующие специальных помещений и кондиционеров.
Основными поставщиками мейнфреймов являются известные компьютерные компании IBM, Amdahl, ICL, Siemens Nixdorf и некоторые другие, но ведущая роль принадлежит безусловно компании IBM. Именно архитектура системы IBM/360, выпущенной в 1964 году, и ее последующие поколения стали образцом для подражания. В нашей стране в течение многих лет выпускались машины ряда ЕС ЭВМ, являвшиеся отечественным аналогом этой системы.
В архитектурном плане мейнфреймы представляют собой многопроцессорные системы, содержащие один или несколько центральных и периферийных процессоров с общей памятью, связанных между собой высокоскоростными магистралями передачи данных. При этом основная вычислительная нагрузка ложится на центральные процессоры, а периферийные процессоры (в терминологии IBM - селекторные, блок-мультиплексные, мультиплексные каналы и процессоры телеобработки) обеспечивают работу с широкой номенклатурой периферийных устройств.
Первоначально мейнфреймы ориентировались на централизованную модель вычислений, работали под управлением патентованных операционных систем и имели ограниченные возможности для объединения в единую систему оборудования различных фирм-поставщиков. Однако повышенный интерес потребителей к открытым системам, построенным на базе международных стандартов и позволяющим достаточно эффективно использовать все преимущества такого подхода, заставил поставщиков мейнфреймов существенно расширить возможности своих операционных систем в направлении совместимости. В настоящее время они демонстрирует свою "открытость", обеспечивая соответствие со спецификациями POSIX 1003.3, возможность использования протоколов межсоединений OSI и TCP/IP или предоставляя возможность работы на своих компьютерах под управлением операционной системы UNIX собственной разработки.
Стремительный рост производительности персональных компьютеров, рабочих станций и серверов создал тенденцию перехода с мейнфреймов на компьютеры менее дорогих классов: миникомпьютеры и многопроцессорные серверы. Эта тенденция получила название "разукрупнение" (downsizing). Однако этот процесс в самое последнее время несколько замедлился. Основной причиной возрождения интереса к мейнфреймам эксперты считают сложность перехода к распределенной архитектуре клиент-сервер, которая оказалась выше, чем предполагалось. Кроме того, многие пользователи считают, что распределенная среда не обладает достаточной надежностью для наиболее ответственных приложений, которой обладают мейнфреймы.
Очевидно выбор центральной машины (сервера) для построения информационной системы предприятия возможен только после глубокого анализа проблем, условий и требований конкретного заказчика и долгосрочного прогнозирования развития этой системы.
Главным недостатком мейнфреймов в настоящее время остается относительно низкое соотношение производительность/стоимость. Однако фирмами-поставщиками мейнфреймов предпринимаются значительные усилия по улучшению этого показателя.
Следует также помнить, что в мире существует огромная инсталлированная база мейнфреймов, на которой работают десятки тысяч прикладных программных систем. Отказаться от годами наработанного программного обеспечения просто не разумно. Поэтому в настоящее время ожидается рост продаж мейнфреймов по крайней мере до конца этого столетия. Эти системы, с одной стороны, позволят модернизировать существующие системы, обеспечив сокращение эксплуатационных расходов, с другой стороны, создадут новую базу для наиболее ответственных приложений.