
- •Архитектура вычислительных систем. Учебное пособие.
- •Характеристики и режимы работы эвм
- •Основные характеристики эвм
- •1.2. Режимы работы эвм
- •1.2.1. Однопрограммный режим работы
- •1.2.2. Мультипрограммный режим работы
- •1.2.3. Режим пакетной обработки
- •1.2.4. Режим разделения времени
- •1.2.5. Диалоговый режим работы
- •1.2.6. Режим работы в реальном масштабе времени
- •Классификация компьютеров по областям применения
- •2.1. Персональные компьютеры и рабочие станции
- •2.3. Серверы
- •2.4. Мейнфреймы
- •2.5. Кластерные архитектуры
- •3. Организация современного пк
- •Архитектура пк на базе набор микросхем 440 lx
- •3.1. Структура системной платы на наборе микросхем 440 lx
- •3.2. Типы системных плат на чипсете 440 lx
- •4. Функциональная и структурная организация процессоров
- •4.1. Классификация процессоров (cisc и risc)
- •4.2.Принципы организации процессоров
- •4.2.1. Назначение и структура процессора
- •Структура микропроцессора
- •4.2.2. Основные регистры процессоров
- •Операционное устройство и шинный интерфейс
- •4.2.3. Способы организации управления вычислительным процессом
- •Схемный принцип управления
- •Микропрограммный принцип
- •4.2.4. Технология mmx
- •Отображение ммх-регистров на fpu-регистры
- •Влияние ммх-команд на контекст fpu
- •4.2.5. Принципы конвейерной технологии
- •Представление о работе конвейера
- •Диаграмма работы простейшего конвейера
- •4.3. Микроархитектура процессоров p5
- •Структурная схема микропроцессора Pentium
- •4.4. Микроархитектура процессоров семейства р6
- •Структурная схема микропроцессора Pentium Pro
- •Ядро и подсистемы памяти Pentium
- •Устройство выборки/декодирования
- •Структура устройства диспетчирования/выполнения
- •Устройство отката
- •Интерфейс с шиной
- •4.5. Микроархитектура процессоров семейства amd
- •Микроархитектура процессора amd-k6-2
- •Микроархитектура процессора amd Athlon
- •Рабочая схема модуля вычислений с плавающей точкой
- •Организация системной шины
- •5.Принципы организации системы прерывания программ
- •5.1. Классы сигналов прерывания
- •5.2. Распределение прерываний в пк на базе процессоров х86
- •Распределение аппаратных прерываний
- •5.3. Приоритеты прерываний
- •Временная диаграмма возможного процесса прерывания программы
- •Определение исполнение программ в системе с учетом приоритетности запросов прерывания
- •5.4. Защита от прерывания
- •Организация памяти пк
- •6.1. Иерархии памяти
- •6.2. Организация кэш-памяти
- •6.3. Организация оперативной памяти (ram)
- •6.3.1. Типы и классификация оп
- •Прямая регистровая адресация
- •6.3.2.4. Подразумеваемая адресация
- •6.3.2.5. Косвенная адресация
- •Косвенная адресация с использованием оперативной памяти
- •6.3.2.6. Косвенная регистровая адресация
- •6.3.2.7. Модификация адресов
- •Индексная адресация с использованием регистров
- •6.3.2.8. Относительная адресация
- •Относительная адресация
- •Формирование исполнительного адреса при относительной и индексной адресации
- •6.4. Организация виртуальной памяти
- •6.4.1. Страничная адресация памяти
- •Адреса при страничной адресации
- •Порядок использования таблицы страниц
- •6.4.2. Сегментация памяти
- •7. Организация ввода-вывода
- •7.2. Системные и локальные шины
- •7.3. Шины ввода/вывода
- •7.3.1. Шина agp
- •Схемы pci и agp
- •7.3.2. Шина usb
- •Топология шины usb
- •7.3.3. Шины ide и scsi
- •8. Периферийные устройства
- •Примеры устройств ввода/вывода
- •8.1. Магнитные и магнитооптические диски
6.4.1. Страничная адресация памяти
Процессы
преобразования адресов и перемещения
информации наиболее просто реализуются
при страничной адресации памяти. Метод
страничной адресации состоит в том,
что виртуальная память (множество
адресов) разделяется на страницы емкостью
соседних адресов. Так, к странице с
адресом 0 относятся адреса 0, 1, 2, ... ,
к странице с адресом
и так далее. В результате адрес слова
будет состоять из двух полей Р, указывающих
адрес страницы, и А — адрес слова в
странице Р (рис. 6.8, а).
Адреса при страничной адресации
1 m 1 m
1 k 1 k 1 k 1 k
a) Виртуальный адрес б) Физический адрес
Рис. 6.8.
Если
физическую память разделить, а сегменты,
состоящие из
соседних ячеек, то физические адреса в
пределах одной виртуальной страницы
по структуре будут полностью совпадать
с математическими адресами (рис. 6.8, б),
где S
- адрес сегмента, а А - адрес слова (ячейки)
в сегменте S.
Размер страниц составляет 512-1024 слова,
но в некоторых случаях возникает
необходимость в использовании страниц
размером 32—128 слов.
В процессе решения задачи страницы перемещаются между ОЗУ и ВЗУ. Если вычислительный процесс распределяется на страницу Р, то она вызывается в ОЗУ. Когда надобность в информации, размещенной на странице Р, отпадает, то она удаляется из ОЗУ в виртуальную память, освобождая место для других страниц. В результате перемещения граница Р может быть помещена на любом сегменте S ОП.
Текущее состояние памяти ЭВМ характеризуется таблицей страниц (рис. 6.9). Отдельной странице виртуальной памяти Pi (i=1, 2, ..., Q-1) соответствует одна строка таблицы, в которой указываются параметры страницы Рi: Si — адрес сегмента ОЗУ, в котором размещается страница Рi, иначе говоря, физический адрес страницы Pi; di - признак доступности страницы: при di=1 страница Pi, хранится в ОЗУ и недоступна для центрального процессора.
Порядок использования таблицы страниц
Виртуальная Таблица Физическая
память страниц память
(номер страницы) (номер сегмента)
Si
di
Рис. 6.9.
В таблице страниц также указываются параметры, определяющие страницу, которую надо удалить из ОЗУ (на рис 6.9 эти параметры не показаны) вследствие относительной низкой вероятности ее использования. Таблица страниц размещается в ОЗУ и в любое время доступна ЦП. Как видно из рис. 6.9, 2048 страниц виртуальной памяти могут размещается в 128 сегментах ОЗУ и на магнитных дисках НМД1 и НМД2 емкостью 960 страниц каждый.
Каждой странице Рi (i=0, 1, 2, . . ., 2047) виртуальной памяти соответствует свой сегмент, адрес которого определен в таблице страниц, и, следовательно, каждому слову присвоен свой физический адрес.
Операционная система (ОС) обеспечивает преобразование математических адресов в физические адреса.