
- •Архитектура вычислительных систем. Учебное пособие.
- •Характеристики и режимы работы эвм
- •Основные характеристики эвм
- •1.2. Режимы работы эвм
- •1.2.1. Однопрограммный режим работы
- •1.2.2. Мультипрограммный режим работы
- •1.2.3. Режим пакетной обработки
- •1.2.4. Режим разделения времени
- •1.2.5. Диалоговый режим работы
- •1.2.6. Режим работы в реальном масштабе времени
- •Классификация компьютеров по областям применения
- •2.1. Персональные компьютеры и рабочие станции
- •2.3. Серверы
- •2.4. Мейнфреймы
- •2.5. Кластерные архитектуры
- •3. Организация современного пк
- •Архитектура пк на базе набор микросхем 440 lx
- •3.1. Структура системной платы на наборе микросхем 440 lx
- •3.2. Типы системных плат на чипсете 440 lx
- •4. Функциональная и структурная организация процессоров
- •4.1. Классификация процессоров (cisc и risc)
- •4.2.Принципы организации процессоров
- •4.2.1. Назначение и структура процессора
- •Структура микропроцессора
- •4.2.2. Основные регистры процессоров
- •Операционное устройство и шинный интерфейс
- •4.2.3. Способы организации управления вычислительным процессом
- •Схемный принцип управления
- •Микропрограммный принцип
- •4.2.4. Технология mmx
- •Отображение ммх-регистров на fpu-регистры
- •Влияние ммх-команд на контекст fpu
- •4.2.5. Принципы конвейерной технологии
- •Представление о работе конвейера
- •Диаграмма работы простейшего конвейера
- •4.3. Микроархитектура процессоров p5
- •Структурная схема микропроцессора Pentium
- •4.4. Микроархитектура процессоров семейства р6
- •Структурная схема микропроцессора Pentium Pro
- •Ядро и подсистемы памяти Pentium
- •Устройство выборки/декодирования
- •Структура устройства диспетчирования/выполнения
- •Устройство отката
- •Интерфейс с шиной
- •4.5. Микроархитектура процессоров семейства amd
- •Микроархитектура процессора amd-k6-2
- •Микроархитектура процессора amd Athlon
- •Рабочая схема модуля вычислений с плавающей точкой
- •Организация системной шины
- •5.Принципы организации системы прерывания программ
- •5.1. Классы сигналов прерывания
- •5.2. Распределение прерываний в пк на базе процессоров х86
- •Распределение аппаратных прерываний
- •5.3. Приоритеты прерываний
- •Временная диаграмма возможного процесса прерывания программы
- •Определение исполнение программ в системе с учетом приоритетности запросов прерывания
- •5.4. Защита от прерывания
- •Организация памяти пк
- •6.1. Иерархии памяти
- •6.2. Организация кэш-памяти
- •6.3. Организация оперативной памяти (ram)
- •6.3.1. Типы и классификация оп
- •Прямая регистровая адресация
- •6.3.2.4. Подразумеваемая адресация
- •6.3.2.5. Косвенная адресация
- •Косвенная адресация с использованием оперативной памяти
- •6.3.2.6. Косвенная регистровая адресация
- •6.3.2.7. Модификация адресов
- •Индексная адресация с использованием регистров
- •6.3.2.8. Относительная адресация
- •Относительная адресация
- •Формирование исполнительного адреса при относительной и индексной адресации
- •6.4. Организация виртуальной памяти
- •6.4.1. Страничная адресация памяти
- •Адреса при страничной адресации
- •Порядок использования таблицы страниц
- •6.4.2. Сегментация памяти
- •7. Организация ввода-вывода
- •7.2. Системные и локальные шины
- •7.3. Шины ввода/вывода
- •7.3.1. Шина agp
- •Схемы pci и agp
- •7.3.2. Шина usb
- •Топология шины usb
- •7.3.3. Шины ide и scsi
- •8. Периферийные устройства
- •Примеры устройств ввода/вывода
- •8.1. Магнитные и магнитооптические диски
Прямая регистровая адресация
Регистр
команд Адресное поле
Признак
адресации
Рис. 6.2.
При таком способе адресации быстродействие ЭВМ повышается, так как нет необходимости извлекать операнды из ОП и команда имеет более короткий формат, так как регистров в СОЗУ обычно значительно меньше, чем ячеек в оперативной памяти. Прямая регистровая адресация используется для операндов, многократно используемых при выполнении программ.
6.3.2.4. Подразумеваемая адресация
При такой адресации в команде не содержится явных указаний об адресе операнда участвующего в операции, или адреса, по которому передается результат операции. Этот адрес подразумевается и фактически задается кодом операции. Например, в одноадресных командах адресом второго операнда или результата операции подразумевается адрес — содержимое специального регистра процессора, хранящего второй операнд или принимающего результат операции; в двухадресных командах подразумевается помещение операции по адресу одного из операндов.
6.3.2.5. Косвенная адресация
В адресном поле команды указывается адрес ячейки оперативной памяти, содержащей другой адрес, который может быть исполнительным Аисп или еще одним косвенным адресом (так называемая многоступенчатая косвенная адресация). Таким образом, косвенная адресация (рис. 6.3) может быть определена как «адресация адреса».
Косвенная адресация с использованием оперативной памяти
Регистр
команд Адресное поле
Рис. 6.3.
Она используется в тех случаях, когда число разрядов в адресной части команды недостаточно для указания всех адресов оперативной памяти ЭВМ.
6.3.2.6. Косвенная регистровая адресация
При таком способе адресации в адресном поле команды число является адре-сом R регистра Рсозу, который содержит исполнительный адрес Аисп (рис. 6.4.).
Косвенная регистровая адресация
Регистр команд
Рис. 6.4.
При такой адресации необходимо сначала загрузить регистр R, а поэтому ее используют тогда, когда программа многократно использует один и тот же адрес ячейки.
6.3.2.7. Модификация адресов
Рассмотренные методы адресации обеспечивают адресацию переменных и констант. При решении ряда задач на ЭВМ необходимо выполнять некоторые участки программ многократно (цикличность вычислительного процесса) над различными операндами, расположенными упорядоченно в массивах ОП. Поскольку операнды, обрабатываемые при повторениях цикла, имеют разные адреса, то каждый цикл в программе можно представить виде последовательности команд, отличающихся адресными частями. Однако при таком подходе программа решения задачи оказывается слишком длинной и ее составление чрезмерно трудоемким.
Программирование вычислительных циклов существенно упрощается, если после каждого цикла обеспечить автоматическое изменение в соответствующих командах их адресных частей. Процедура изменения адреса в командах называется модификацией адреса. Модификация адресов команд основана на возможности выполнения над кодами команд или их частями арифметических и логических операций. В качестве операндов в командах вычислительного цикла могут фигурировать элементы массивов называемые переменными с индексами. Элемент массива представляется базовым адресом Аб и индекса i, указывающего, на сколько единиц должен быть изменен адрес команды перед ее выполнением.
Программный способ модификации адресов в команде значительно замедляет процесс обработки переменных с индексом и требует для этих целен большой емкости оперативной памяти. В связи с этим в современных ЭВМ для модификации адресов используют аппаратные средства. В этом случае адрес в команде (рис. 6.5) представляется двумя полями.
В поле В указывается базовый адрес массива Аб оперативной памяти. Поле Х называется индексом. Если Х=0, то адрес Аб не модифицируется, т.е. является исполнительным Аисп. Значение Х<>0 определяет адрес ячейки памяти индексов, в которой хранится индекс i. Модификация адреса сводится к вычислению исполнительного адреса Аисп=Аб+(Х), где (X) — содержимое ячейки Х индексной памяти.
В качестве индексной памяти используют в процессоре так называемые индексные регистры СОЗУ. Суммирование производится или АЛБ процессора, пли в специальном сумматоре обработки адресов, что несколько только увеличивает объем процессора.