
- •Архитектура вычислительных систем. Учебное пособие.
- •Характеристики и режимы работы эвм
- •Основные характеристики эвм
- •1.2. Режимы работы эвм
- •1.2.1. Однопрограммный режим работы
- •1.2.2. Мультипрограммный режим работы
- •1.2.3. Режим пакетной обработки
- •1.2.4. Режим разделения времени
- •1.2.5. Диалоговый режим работы
- •1.2.6. Режим работы в реальном масштабе времени
- •Классификация компьютеров по областям применения
- •2.1. Персональные компьютеры и рабочие станции
- •2.3. Серверы
- •2.4. Мейнфреймы
- •2.5. Кластерные архитектуры
- •3. Организация современного пк
- •Архитектура пк на базе набор микросхем 440 lx
- •3.1. Структура системной платы на наборе микросхем 440 lx
- •3.2. Типы системных плат на чипсете 440 lx
- •4. Функциональная и структурная организация процессоров
- •4.1. Классификация процессоров (cisc и risc)
- •4.2.Принципы организации процессоров
- •4.2.1. Назначение и структура процессора
- •Структура микропроцессора
- •4.2.2. Основные регистры процессоров
- •Операционное устройство и шинный интерфейс
- •4.2.3. Способы организации управления вычислительным процессом
- •Схемный принцип управления
- •Микропрограммный принцип
- •4.2.4. Технология mmx
- •Отображение ммх-регистров на fpu-регистры
- •Влияние ммх-команд на контекст fpu
- •4.2.5. Принципы конвейерной технологии
- •Представление о работе конвейера
- •Диаграмма работы простейшего конвейера
- •4.3. Микроархитектура процессоров p5
- •Структурная схема микропроцессора Pentium
- •4.4. Микроархитектура процессоров семейства р6
- •Структурная схема микропроцессора Pentium Pro
- •Ядро и подсистемы памяти Pentium
- •Устройство выборки/декодирования
- •Структура устройства диспетчирования/выполнения
- •Устройство отката
- •Интерфейс с шиной
- •4.5. Микроархитектура процессоров семейства amd
- •Микроархитектура процессора amd-k6-2
- •Микроархитектура процессора amd Athlon
- •Рабочая схема модуля вычислений с плавающей точкой
- •Организация системной шины
- •5.Принципы организации системы прерывания программ
- •5.1. Классы сигналов прерывания
- •5.2. Распределение прерываний в пк на базе процессоров х86
- •Распределение аппаратных прерываний
- •5.3. Приоритеты прерываний
- •Временная диаграмма возможного процесса прерывания программы
- •Определение исполнение программ в системе с учетом приоритетности запросов прерывания
- •5.4. Защита от прерывания
- •Организация памяти пк
- •6.1. Иерархии памяти
- •6.2. Организация кэш-памяти
- •6.3. Организация оперативной памяти (ram)
- •6.3.1. Типы и классификация оп
- •Прямая регистровая адресация
- •6.3.2.4. Подразумеваемая адресация
- •6.3.2.5. Косвенная адресация
- •Косвенная адресация с использованием оперативной памяти
- •6.3.2.6. Косвенная регистровая адресация
- •6.3.2.7. Модификация адресов
- •Индексная адресация с использованием регистров
- •6.3.2.8. Относительная адресация
- •Относительная адресация
- •Формирование исполнительного адреса при относительной и индексной адресации
- •6.4. Организация виртуальной памяти
- •6.4.1. Страничная адресация памяти
- •Адреса при страничной адресации
- •Порядок использования таблицы страниц
- •6.4.2. Сегментация памяти
- •7. Организация ввода-вывода
- •7.2. Системные и локальные шины
- •7.3. Шины ввода/вывода
- •7.3.1. Шина agp
- •Схемы pci и agp
- •7.3.2. Шина usb
- •Топология шины usb
- •7.3.3. Шины ide и scsi
- •8. Периферийные устройства
- •Примеры устройств ввода/вывода
- •8.1. Магнитные и магнитооптические диски
Микроархитектура процессора amd Athlon
2-way, 64 KB Instruction
Cache
Predecode Cache
Branch Predecode Table
System Interfase L2 SRAM
Рис. 4.17.
Integer, MMX- и 3DNow! - инструкции передаются по двум независимым шинам — Register X Issue Bus и Register Y Issue Bus. При этом блоки Integer X ALU и MMX ALU (X) подключены только к шине Register X Issue Bus, a Integer Y ALU и MMX ALU (У) — только к шине Register Y Issue Bus. А вот блоки MMX/3DNow! Multiplier и 3DNow! ALU подключены сразу к обеим шинам, как и блок MMX Shifter, функция которого заключается в том, чтобы переключать блоки MMX/3DNow! Multiplier и 3DNow! ALU между шинами.
Модуль предсказания переходов (Branch Logic). Назначение этого модуля, как следует из его названия, состоит в предсказании возможных переходов.
Во всех "старых процессорах AMD, Модуль вычислений с плавающей точкой был неконвейерным, что не позволяло начать выполнять новую команду пока не закончиться выполнение предыдущей. Это приводит к сильному падению производительности всей системы. До сих пор разработчики AMD не вносили никаких изменений в FPU, рассчитывая на свой блок 3Dnow!
в Athlone AMD (рис. 4.17) впервые представляет новый, полностью конвейерный FPU модуль, позволяюший выполнять до трех операций за такт.
Обратите внимание на три вычислительных блока и на то, как модули Stack Map, Registry Rename, Scheduler с 36 входами и FPU Register File с 88 входами позволяют разделить вычисления между ними (рис. 4.18).
Рабочая схема модуля вычислений с плавающей точкой
Рис. 4.18.
FPU в процессорах Pentium III и Celeron разделен на два модуля FADD и FMUL; первый, полностью конвейерный, выполняет простые вычисления, в то время как второй выполняет более сложные вычисления и не полностью конвейерный. Естественно, что наличие трех, полностью конвейерных модулей, вместо двух, из которых только один
полностью конвейерный, позволяет получить лучшую производительность в приложениях, активно использующих вычисления вещественных чисел.
По сравнению с FPU, целочисленные модули AMD всегда были достаточно производительными, но, несмотря на это, в Athlon произошли некоторые изменения.
В новом блоке целочисленных вычислений используется три конвейерных модуля, способных выполнять три операции одновременно. Глубина этих конвейерных модулей составляет 10 шагов, что, по словам AMD, является самым оптимальным.
Блок 3DNow! также претерпел ряд изменений. 19 новых SIMD инструкций были добавлены к оригинальному 3Dnow!, чтобы увеличить производительность целочисленных и вещественных операций. Также добавлены пять новых DSP инструкций предназначенных для использования в мультимедиа приложениях (МРЗ, АСЗ, Mpeg2 encoding и decoding). Используя расширенный набор 3Dnow! Инструкций, можно получить до 20% прироста производительности по сравнению с стандартным набором и около 50% по сравнению с приложениями, не использующими 3Dnow!
Одной из интересных особенностей нового процессора является применение новой архитектуры системной шины — EV6. Такая же архитектура применяется в системах на процессорах Alpha. Применение EV6 связано с желанием AMD использовать Athlon в производительных многопроцессорных системах.
Сравнение EV6 и GTL+ (Pentium III и Celeron) показывает, что первая архитектура использует технологию Point to Point, в которой каждый процессор имеет свою отдельную часть шины, в то время, как в GTL+ процессоры должны делить одну "широкую" шину. Это объясняет, почему многопроцессорные системы на GTL+ шине очень трудно найти. EV6 поддерживает до 14 процессоров, но пока самые оптимальные теоретические расчеты предлагают использовать не более восьми процессоров.