
- •Архитектура вычислительных систем. Учебное пособие.
- •Характеристики и режимы работы эвм
- •Основные характеристики эвм
- •1.2. Режимы работы эвм
- •1.2.1. Однопрограммный режим работы
- •1.2.2. Мультипрограммный режим работы
- •1.2.3. Режим пакетной обработки
- •1.2.4. Режим разделения времени
- •1.2.5. Диалоговый режим работы
- •1.2.6. Режим работы в реальном масштабе времени
- •Классификация компьютеров по областям применения
- •2.1. Персональные компьютеры и рабочие станции
- •2.3. Серверы
- •2.4. Мейнфреймы
- •2.5. Кластерные архитектуры
- •3. Организация современного пк
- •Архитектура пк на базе набор микросхем 440 lx
- •3.1. Структура системной платы на наборе микросхем 440 lx
- •3.2. Типы системных плат на чипсете 440 lx
- •4. Функциональная и структурная организация процессоров
- •4.1. Классификация процессоров (cisc и risc)
- •4.2.Принципы организации процессоров
- •4.2.1. Назначение и структура процессора
- •Структура микропроцессора
- •4.2.2. Основные регистры процессоров
- •Операционное устройство и шинный интерфейс
- •4.2.3. Способы организации управления вычислительным процессом
- •Схемный принцип управления
- •Микропрограммный принцип
- •4.2.4. Технология mmx
- •Отображение ммх-регистров на fpu-регистры
- •Влияние ммх-команд на контекст fpu
- •4.2.5. Принципы конвейерной технологии
- •Представление о работе конвейера
- •Диаграмма работы простейшего конвейера
- •4.3. Микроархитектура процессоров p5
- •Структурная схема микропроцессора Pentium
- •4.4. Микроархитектура процессоров семейства р6
- •Структурная схема микропроцессора Pentium Pro
- •Ядро и подсистемы памяти Pentium
- •Устройство выборки/декодирования
- •Структура устройства диспетчирования/выполнения
- •Устройство отката
- •Интерфейс с шиной
- •4.5. Микроархитектура процессоров семейства amd
- •Микроархитектура процессора amd-k6-2
- •Микроархитектура процессора amd Athlon
- •Рабочая схема модуля вычислений с плавающей точкой
- •Организация системной шины
- •5.Принципы организации системы прерывания программ
- •5.1. Классы сигналов прерывания
- •5.2. Распределение прерываний в пк на базе процессоров х86
- •Распределение аппаратных прерываний
- •5.3. Приоритеты прерываний
- •Временная диаграмма возможного процесса прерывания программы
- •Определение исполнение программ в системе с учетом приоритетности запросов прерывания
- •5.4. Защита от прерывания
- •Организация памяти пк
- •6.1. Иерархии памяти
- •6.2. Организация кэш-памяти
- •6.3. Организация оперативной памяти (ram)
- •6.3.1. Типы и классификация оп
- •Прямая регистровая адресация
- •6.3.2.4. Подразумеваемая адресация
- •6.3.2.5. Косвенная адресация
- •Косвенная адресация с использованием оперативной памяти
- •6.3.2.6. Косвенная регистровая адресация
- •6.3.2.7. Модификация адресов
- •Индексная адресация с использованием регистров
- •6.3.2.8. Относительная адресация
- •Относительная адресация
- •Формирование исполнительного адреса при относительной и индексной адресации
- •6.4. Организация виртуальной памяти
- •6.4.1. Страничная адресация памяти
- •Адреса при страничной адресации
- •Порядок использования таблицы страниц
- •6.4.2. Сегментация памяти
- •7. Организация ввода-вывода
- •7.2. Системные и локальные шины
- •7.3. Шины ввода/вывода
- •7.3.1. Шина agp
- •Схемы pci и agp
- •7.3.2. Шина usb
- •Топология шины usb
- •7.3.3. Шины ide и scsi
- •8. Периферийные устройства
- •Примеры устройств ввода/вывода
- •8.1. Магнитные и магнитооптические диски
Микропрограммный принцип
Команда Регистр управляющего слова
К управляющим цепям
Рис. 4.4.
Достоинство микропрограммного управления заключается в том, что для изменения вида операций нет необходимости в переделке сложных электронных схем, неизбежной в ЭВМ со схемным управлением, а следует только изменить микропрограмму. Это обстоятельство дает возможность в данной ЭВМ использовать программы, составленные для другой ЭВМ. Благодаря этому микропрограммное управление получило широкое распространение в современных ЭВМ.
Схема управляющего устройства при микропрограммном принципе управления
РК РМК
К управляющим
цепям
БМУ – блок микропрограммного управления
МК - микрокоманда
РК - регистр команд
УС - управляющее слово
РМК – регистр микрокоманд
Рис. 4.5.
4.2.4. Технология mmx
Технология MMX - разработана для ускорения мультимедия и коммуникационных программ. Она включает в себя новые команды и типы данных, что позволяет создавать приложения нового уровня. Технология основана на параллельной обработке данных. При этом сохраняется полная совместимость с существующими операционными системами и программным обеспечением. ММХ-технологии поддерживает новую арифметику, называемую арифметикой с насыщением (Saturation arithmetic).
Наибольший эффект от использования ММХ-технологии может быть достигнут в алгоритмах со следующими характеристиками:
малый размер данных (8-битные графические пикселы, 16-битные звуковые данные);
короткие, часто повторяющиеся циклы;
частые умножения и накопления.
В основе ММХ лежит принцип SIMD (Single Instruction Multiple Data), т.е. одной командой можно обработать сразу несколько единиц информации.
Отображение ммх-регистров на fpu-регистры
ST7
TOS
Status Word
ST0
FP Tag 63 0
MM7
00
00
00
00
00
00
00
00
MM0
00
TOS=0
Рис. 4.6.
Технология ММХ основана на отображении регистров ММХ на регистры FPU (см. рис. 4.6). Главным образом это сделано для сохранения с существующим программным обеспечением.
Из рис. 4.6. видно, что ММХ-регистры отображены на поля мантиссы в FPU-регистрах. Значение, записываемое в ММХ-регистр, автоматически появляется в младших битах (биты 63-0) соответствующих FPU-регистров. При этом в поле порядка (биты 78-64) и знаковый бит (бит 79) заносятся единицы. Значение поля TOS (Top Of Stack) устанавливается в нуль после выполнения каждой ММХ-команды. Значение мантиссы, записываемое в FPU-регистр с помощью FPU-команды, автоматически появляется в соответствующем ММХ-регистре.
Отображение ММХ-регистров фиксировано и не зависит от значения поля TOS (биты 11-13 в регистре состояния FPU). В обозначении MMn, n - указывает на физический номер регистра, а в STn - n указывает на относительный номер регистра (относительно поля TOS).
При TOS=0: ММ0 отображается на ST0, ММ1 - ST1 и т.д.
При TOS=2: ММ0 отображается на ST6, ММ1 - ST6, ММ2 - ST0 и т.д.
После выполнения любой ММХ-команды (кроме EMMS) значения всех полей регистра тегов устанавливается в 00. Команда EMMS устанавливает значения всех полей регистра тегов 11 (см. табл.4.1.). Значения регистра тегов не оказывает никакого влияния на ММХ-регистры или выполнения ММХ-команд.
Так как ММХ и FPU используют фактически и те же регистры, для сохранения и восстановления контекста ММХ используются команды FSAVE (Store FP state) и FRSTOR (Restore FP state). Если при попытке выполнить ММХ-команду бит TS в регистре CR0 установлен в единицу, то генерируется исключение Int7. Благодаря этому факту обеспечивается прозрачность управления контекстом MMX для операционной системы.
Таблица 4.1