
- •Архитектура вычислительных систем. Учебное пособие.
- •Характеристики и режимы работы эвм
- •Основные характеристики эвм
- •1.2. Режимы работы эвм
- •1.2.1. Однопрограммный режим работы
- •1.2.2. Мультипрограммный режим работы
- •1.2.3. Режим пакетной обработки
- •1.2.4. Режим разделения времени
- •1.2.5. Диалоговый режим работы
- •1.2.6. Режим работы в реальном масштабе времени
- •Классификация компьютеров по областям применения
- •2.1. Персональные компьютеры и рабочие станции
- •2.3. Серверы
- •2.4. Мейнфреймы
- •2.5. Кластерные архитектуры
- •3. Организация современного пк
- •Архитектура пк на базе набор микросхем 440 lx
- •3.1. Структура системной платы на наборе микросхем 440 lx
- •3.2. Типы системных плат на чипсете 440 lx
- •4. Функциональная и структурная организация процессоров
- •4.1. Классификация процессоров (cisc и risc)
- •4.2.Принципы организации процессоров
- •4.2.1. Назначение и структура процессора
- •Структура микропроцессора
- •4.2.2. Основные регистры процессоров
- •Операционное устройство и шинный интерфейс
- •4.2.3. Способы организации управления вычислительным процессом
- •Схемный принцип управления
- •Микропрограммный принцип
- •4.2.4. Технология mmx
- •Отображение ммх-регистров на fpu-регистры
- •Влияние ммх-команд на контекст fpu
- •4.2.5. Принципы конвейерной технологии
- •Представление о работе конвейера
- •Диаграмма работы простейшего конвейера
- •4.3. Микроархитектура процессоров p5
- •Структурная схема микропроцессора Pentium
- •4.4. Микроархитектура процессоров семейства р6
- •Структурная схема микропроцессора Pentium Pro
- •Ядро и подсистемы памяти Pentium
- •Устройство выборки/декодирования
- •Структура устройства диспетчирования/выполнения
- •Устройство отката
- •Интерфейс с шиной
- •4.5. Микроархитектура процессоров семейства amd
- •Микроархитектура процессора amd-k6-2
- •Микроархитектура процессора amd Athlon
- •Рабочая схема модуля вычислений с плавающей точкой
- •Организация системной шины
- •5.Принципы организации системы прерывания программ
- •5.1. Классы сигналов прерывания
- •5.2. Распределение прерываний в пк на базе процессоров х86
- •Распределение аппаратных прерываний
- •5.3. Приоритеты прерываний
- •Временная диаграмма возможного процесса прерывания программы
- •Определение исполнение программ в системе с учетом приоритетности запросов прерывания
- •5.4. Защита от прерывания
- •Организация памяти пк
- •6.1. Иерархии памяти
- •6.2. Организация кэш-памяти
- •6.3. Организация оперативной памяти (ram)
- •6.3.1. Типы и классификация оп
- •Прямая регистровая адресация
- •6.3.2.4. Подразумеваемая адресация
- •6.3.2.5. Косвенная адресация
- •Косвенная адресация с использованием оперативной памяти
- •6.3.2.6. Косвенная регистровая адресация
- •6.3.2.7. Модификация адресов
- •Индексная адресация с использованием регистров
- •6.3.2.8. Относительная адресация
- •Относительная адресация
- •Формирование исполнительного адреса при относительной и индексной адресации
- •6.4. Организация виртуальной памяти
- •6.4.1. Страничная адресация памяти
- •Адреса при страничной адресации
- •Порядок использования таблицы страниц
- •6.4.2. Сегментация памяти
- •7. Организация ввода-вывода
- •7.2. Системные и локальные шины
- •7.3. Шины ввода/вывода
- •7.3.1. Шина agp
- •Схемы pci и agp
- •7.3.2. Шина usb
- •Топология шины usb
- •7.3.3. Шины ide и scsi
- •8. Периферийные устройства
- •Примеры устройств ввода/вывода
- •8.1. Магнитные и магнитооптические диски
Операционное устройство и шинный интерфейс
ОУ: Операционное устройство ШИ: Шинный интерфейс
Управление программами
Шина
Очередь команд
Рис. 4.2.
4.2.3. Способы организации управления вычислительным процессом
При автоматическом выполнении программы процессором команды последовательно поступают из оперативной памяти (ОП) в ЦУУ на время их выполнения АЛУ. Интервал времени, в течение которого процессор выполняет команду, называют рабочим циклом ЭВМ. Величина рабочего цикла зависит от структуры команды, типа операций, структуры операционных блоков АЛУ.
По принципу организации управления вычислительным процессом различают процессоры схемного типа или «жесткой» логикой, с микропрограммным и смешанным (микропрограммно-схемным) управлением.
Схемное управление - управление, при котором для выполнения любой операции последовательность управляющих сигналов задается логическими схемами (см. рис. 4.3). Различают центральное, местное и смешанное схемное управление.
Схемный принцип управления
1 0 0 1 … 0
……
УПn – управляющие части
Рис. 4.3.
В процессорах с центральным управлением длительность рабочего цикла выбирается такой, чтобы за время между двумя управляющими сигналами выполнялась самая длинная операция в процессоре. Такие процессоры получили название синхронных, а блок, в котором формируются управляющие сигналы для всех исполнительных устройств ЭВМ, называют центральным блоком управления (ЦБУ).
В синхронных процессорах при выполнении большинства операций, особенно коротких (например, операция сложения), происходит потеря машинного времени, связанная с непроизводительными простоями процессора. Однако структура процессора отличается простотой, экономичностью и удобна в эксплуатации.
В процессорах с местным управлением вычислительным процессом управление производится так, что каждая операция выполняется после выполнения предыдущей операции. При этом каждое исполнительное устройство после окончания работы формирует сигнал «Конец работы», который одновременно является сигналом «Начало работы» другого исполнительного устройства. Процессоры с переменной длительностью рабочего цикла, величина которого зависит от вида выполняемой операции и кодов операндов, называют асинхронными. В асинхронных процессорах основные исполнительные устройства имеют местные (автономные) блоки управления, что резко повышает быстродействие таких процессоров, так как отсутствуют простои между реальными циклами выполнения команд. Основной недостаток асинхронных процессоров — их сложность.
В процессорах со смешанным управлением исполнение простейших операций осуществляется в синхронном режиме, а наиболее сложные операции (например, деление, умножение и др.) - в асинхронном. При смешанном управлении процессор содержит как центральный блок, так и местные блоки управления операциями. Смешанный способ управления вычислительным процессом позволяет получить высокое быстродействие процессора при умеренных затратах оборудования, а поэтому наиболее распространен в современных ЭВМ.
Микропрограммное управление (см. рис. 4.4) основано на замене управляющих логических схем (см. рис. 4.5) специальной программой, хранящейся в ПЗУ. При таком управлении каждая команда разделяется на ряд элементарных этапов, получивших название микроопераций. Последовательность микрокоманд, выполняющих одну команду (операцию), представляет собой микропрограмму. Для характеристики временных соотношений между различными этапами операции используется понятие машинный такт, определяющий интервал времени, в течение которого выполняется одна или одновременно несколько микроопераций.