
- •Кристаллические тела и их особенности;
- •2. Внутренняя энергия идеального газа;
- •Идеальные газы
- •3. Работа в термодинамике;
- •4.Закон кулона;
- •5.Применение первого закона термодинамики к различным процессам;
- •Применение первого закона термодинамики к различным тепловым процессам в идеальном газе
- •6.Электрический ток. Сила тока;
- •Сила и плотность тока
- •7.Потенциал электростатического поля. Разность потенциалов;
- •Разность потенциалов
- •Единица разности потенциалов
- •Связь между напряженностью и напряжением.
- •9.Последовательное соединение ;
- •10.Изобарный процесс;
- •11.Изохорный процесс;
- •12.Параллельные соединения;
- •13.Агрегатные состояния веществ;
- •14.Зависимость сопротивление проводника от температуры;
- •15.Законы Ньютона;
- •16.Первый закон термодинамики;
- •17.Адиабатический процесс;
- •18.Напряженность электрического поля;
- •19.Напряжение;
- •20.Гармонические колебания;
- •21.Вес и невесомость;
- •22.Равноускоренное движение;
- •23.Напряженность электрического поля;
- •24.Закон всемирного тяготения;
- •25.Закон Джоуля - Ленца;
- •26.Закон сохранения энергии;
- •27.Основные положения молекулярно кинетической теории;
- •28.Свойство идеального газа;
- •29.Постоянный электрический ток; Что называют электрическим током?
- •Условия существования постоянного электрического тока.
- •Основные понятия.
- •Законы Ома.
- •Короткое замыкание.
- •Последовательное и параллельное соединение проводников.
- •Правила Кирхгофа.
- •Порядок расчета сложной цепи постоянного тока.
- •Шунты и добавочные сопротивления.
- •30.Уравнение Менделеева – Клапейрона;
- •31.Виды кристаллических структур;
- •32.Механические колебания;
- •33.Работа сил электрического поля;
- •34.Принцып действия тепловой машины;
22.Равноускоренное движение;
Равноускоренное движение — движение, при котором ненулевой вектор ускорения остаётся неизменным по модулю и направлению.
Примером
такого движения является движение тела,
брошенного под углом
к
горизонту в однородном поле силы
тяжести — тело движется с постоянным
ускорением
,
направленным вертикально вниз.
При равноускоренном движении по прямой скорость тела определяется формулой:
Зная,
что
,
найдём формулу для определения координаты
x:
Примечание.
Равнозамедленным
можно назвать движение, при котором
модуль скорости равномерно уменьшается
со временем (если вектора
и
противонаправлены).
Равнозамедленное движение также является
равноускоренным.
23.Напряженность электрического поля;
Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный[1] пробный заряд, помещенный в данную точку поля, к величине этого заряда :
.
Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном[2] множителе).
В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря - разное[3] в разных точках пространства), таким образом, - это векторное поле. Формально это выражается в записи
представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.
Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон.
24.Закон всемирного тяготения;
Закон всемирного тяготения был открыт И. Ньютоном в 1682 году. Еще в 1665 году 23-летний Ньютон высказал предположение, что силы, удерживающие Луну на ее орбите, той же природы, что и силы, заставляющие яблоко падать на Землю. По его гипотезе между всеми телами Вселенной действуют силы притяжения (гравитационные силы), направленные по линии, соединяющей центры масс (рис. 1.10.1). Понятие центра масс тела будет строго определено в § 1.23. У тела в виде однородного шара центр масс совпадает с центром шара.
|
25.Закон Джоуля - Ленца;
Закон Джоуля — Ленца — физический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцем[1].
В словесной формулировке звучит следующим образом[2]
Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля
Математически может быть выражен в следующей форме:
где
—
мощность выделения тепла в единице
объёма,
—
плотность электрического тока,
—
напряжённость
электрического поля,
σ —
проводимость
среды.
Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах[3]:
Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка
В математической форме этот закон имеет вид
где dQ — количество теплоты, выделяемое за промежуток времени dt, I — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t1 до t2. В случае постоянных силы тока и сопротивления: