
- •1.Введение.
- •2. Числа.
- •3. Константы.
- •4. Строки.
- •5. Переменные, неизвестные и выражения.
- •Практическая работа № 2. Использование команд преобразования выражений maple для математических вычислений.
- •1. Команды преобразования выражений.
- •2. Упрощение выражения: simplify ( ).
- •3. Раскрытие скобок в выражении: expand ( ).
- •4. Разложение полинома на множители: factor ( ).
- •5. Сокращение алгебраической дроби: normal ( ).
- •6. Приведение нескольких членов выражения к одному: combine ( ).
- •7. Приведение подобных членов: collect ( ).
- •8. Рационализация дробей: rationalize( ).
- •9. Ограничения на неизвестные: assume( ).
- •Практическая работа № 3. Решение уравнений, неравенств и их систем.
- •1. Введение.
- •2. Команда: solve ( ).
- •3. Команда: fsolve ( ).
- •4. Другие команды решения уравнений.
- •5. Решение неравенств.
- •Литература
5. Сокращение алгебраической дроби: normal ( ).
Команда normal ( ) приводит выражение, содержащее алгебраические дроби, к общему знаменателю и упрощает полученную алгебраическую дробь, сократив и числитель, и знаменатель на наибольший общий делитель. Команда имеет две формы вызова:
normal (f);
normal (f, expanded);
где f — алгебраическая дробь, а параметр expanded указывает на то, что после сокращения дроби в числителе и знаменателе раскрываются скобки.
Пример 7.Сокращение алгебраических дробей.
> f:=1/x+1/(x+1)^2+1/(x+1);
> normal(f);
Если параметр f задан в виде списка, множества, последовательности, ряда, уравнения, отношения или функции, то команда normal ( ) последовательно применяется к компонентам f. Например, для уравнения это означает, что процедура сокращения применяется и к правой, и к левой части уравнения. В случае ряда, это означает, что упрощаются коэффициенты ряда, а в случае выражения с несколькими функциями, аргументы которых представлены алгебраическими дробями, процедура сокращения применяется к аргументу каждой функции:
> s:=sin(x/(x+1)-x)^2+cos(-x/(x+1)+x);
> normal(s);
> normal(1/x+y=x/y+(3*y)/x);
6. Приведение нескольких членов выражения к одному: combine ( ).
Назначение команды combine ( ) – привести несколько членов в выражении, представленном суммой, произведением или степенями неизвестных, к одному члену, используя разнообразные правила. Эти правила, по существу, противоположны правилам, применяемым командой expand ( ). Например, рассмотрим известное тригонометрическое соотношение:
sin(а+b) = sin(a) cos(b) +cos(а) sin( b).
Команда expand ( ) использует его слева направо, тогда как команда combine ( ) действует наоборот:
> expand(sin(a+b));
> combine(sin(a)*cos(b)+cos(a)*sin(b));
Однако рассмотрим еще один пример:
> g:=sin(a+b)^2;
> s:=expand(g);
> f:=combine(s);
Как видно из примера, команда combine ( ) преобразовала выражение s не к исходному выражению g, которое мы раскрыли функцией expand ( ). Это происходит потому, что Марlе осуществляет приведение членов выражения по своим внутренним алгоритмам, которые завершаются, как только получилось (или не получилось) представление в соответствии с идеологией команды combine ( ). В нашем примере - представление через тригонометрическую функцию с аргументом, являющимся линейной комбинацией аргументов тригонометрических функций преобразуемого выражения. Если мы хотим получить исходный вид выражения g, то следует воспользоваться командой подстановки subs ( ), параметры которой определяют, что на что следует заменить в выражении:
> subs(cos(2*a+2*b)=-2*sin(a+b)^2+1,f);
Команда combine ( ) “знакома” с практически всеми правилами преобразования элементарных математических функций. Если вторым ее параметром задать одно из следующих имен:
abs exp piecewise Psi Signum arctan icombine polylog radical trig conjugate ln power range
которые соответствуют используемым в Maple функциям, то при преобразовании выражения будут использоваться только правила преобразования соответствующих функций. Для функций, правила преобразования которых зависят от значения их аргументов (arctan) или которые имеют ограничения на значения аргументов (ln, radical), можно задать третий параметр symbolic, который будет предписывать функции combine ( ) не обращать внимания на интервалы изменения аргументов подобных функций, а осуществлять формальные символические преобразования в соответствии с формулами преобразования этих функций.