Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
text(871)_3-4-5_tv_per.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
7.56 Mб
Скачать

Электромагнитные явления в системе «индуктор – металл»

В течение большей части плавки (с момента, как только расплавится часть шихты, в которой могут разместиться еще нерасплавившиеся куски) шихта представляет собой сплошной цилиндрический блок с μr = 1. Сталь удовлетворяет этому условию при температурах выше точки Кюри. Поэтому ИТП можно рассматривать как цилиндрическую систему «индуктор – металл».

Исходными уравнениями для исследования электромагнитных явлений индукционного нагрева в системе «индуктор–металл» являются основные уравнения электромагнитного поля (140) и (141).

Совместное решение уравнений Максвелла, представляющих собой систему уравнений с двумя неизвестными, дает возможность перейти к одному уравнению с одним неизвестным (волновые уравнения):

(142)

где  – коэффициент распространения, ;  – коэффициент ослабления, ;  – коэффициент фазы, .

Решения волновых уравнений описывают волнообразно распространяющиеся в пространстве процессы изменения величин электрического и магнитного полей, т.е. электромагнитные волны.

Рассмотрим случай падения плоской электромагнитной волны на изотропное полуограниченное металлическое тело с плоской поверхностью; протяженность поверхности нагреваемого объекта и его глубина бесконечны. Напряженность электрического и магнитного полей у поверхности металла обозначим соответственно Епврх и Нпврх, а в металле (на глубине z от поверхности) – Еz и Нz. Для нахождения этих величин необходимо волновые уравнения для проводящей среды (142) написать для прямоугольной системы координат. Решение этих уравнений для относительных модулей комплексных векторов имеет вид

(143)

т.е. электромагнитная волна в плоском теле экспоненциально затухает в зависимости от величины коэффициента ослабления α.

Коэффициент α – комплексная величина:

, (144)

где δэкв – эквивалентная глубина проникновения плоской электромагнитной волны в массивном проводнике, м;

, (145)

ρ – в Ом∙м; f – в Гц.

Величину δэкв широко используют в теории индукционного нагрева вообще и при расчетах ИТП в частности.

На расстоянии от поверхности, равном эквивалентной глубине проникновения, амплитуда волны уменьшается в е = 2,71828... раз, т.е. затухает до 36,8 % от своего начального значения (рис. 80, кривая 1).

Электромагнитная волна в проводящей среде сопровождается током проводимости, плотность которого Jz на глубине z может быть найдена по закону Ома:

Jz = Ez/ρ;

Jr = Jz/Jпврх =e–αz = χ(z / δэкв). (146)

Рис. 80. Изменение относительных величин модуля напряженности электрического |Е|r и магнитного |В|r полей и плотности тока проводимости |J|r (кривая 1), а также плотности потока активной мощности |qакт|r (кривая 2) по глубине полуограниченного металлического тела

В ИТП магнитное поле создают, как правило, многовитковыми индукторами. Полагая, что рассматриваемая плоская электромагнитная волна создана соответствующим плоским индуктором с числом проводов N1 на единицу длины и силой тока в витке I, получим по закону полного тока напряженность магнитного поля у поверхности металла Нпврх = IN1 и амплитудное значение

, (147)

где I – действующее значение силы тока в индукторе.

Электромагнитная волна несет энергию, определяемую вектором плотности потока мощности – вектором Пойнтинга. Величина плотности потока мощности, переносимая плоской электромагнитной волной, убывает по мере проникновения волны в глубь нагреваемого тела по закону (см. рис. 80, кривая 2).

Значение вектора Пойнтинга является комплексной величиной.

Вещественная (англ. Real) часть комплекса, кВт/м2:

** (148)

определяет плотность потока активной мощности, характеризующую скорость превращения энергии электромагнитного поля в тепловую, а мнимая (англ. Imaginary) часть, квар/м2:

** (149)

является плотностью потока реактивной мощности, характеризующей скорость превращения энергии электромагнитного поля из электрической формы в магнитную и обратно.

В ИТП электромагнитное поле создают цилиндрические волны (рис. 81): вектор напряженности электрического поля направлен по касательной к окружностям, центры которых лежат на оси цилиндрической волны (Е = Еψ; Еz = 0; ЕR = 0); вектор напряженности магнитного поля направлен параллельно оси цилиндрической волны (Н = Нz; Нψ = 0; НR = 0).

Для описания движения такой волны надо вместо уравнений, которые соответствовали плоской волне, составить на основании волновых уравнений (142) аналогичные уравнения в цилиндрических координатах.

Рис. 81. Падение цилиндрической электромагнитной волны на сплошной металлический цилиндр диаметром Dм: I – ток в индукторе; Н3, Нпврх, НR и Нц – напряженность магнитного поля в зазоре, на поверхности, в точке радиусом R и на оси металлического цилиндра соответственно; ψ – меридианный угол (долгота); на оси OO показана эпюра мгновенных значений напряженности магнитного поля; стрелки указывают направление соответствующих электрических силовых линий (линии токов проводимости J) по сечению цилиндра

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]