Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
IG.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
116.04 Кб
Скачать

18 Тектонические движения земной коры можно разделить на три основных типа:

•колебательные, выражающиеся в медленных поднятиях и опусканиях отдельных участков земной коры и приводящие к об-разованию крупных поднятий и прогибов;

•складчатые, обусловливающие смятие горизонтальных слоев земной коры в складки;

•разрывные, приводящие к разрывам слоев и массивов горных пород.

оползней.

Складчатые движения. Осадочные породы первоначально зале­гают горизонтально или почти горизонтально. Это положение со­храняется даже при колебательных движениях земной коры. Складчатые тектонические движения выводят пласты из горизон­тального положения, придают им наклон или сминают в склад­ки. Так возникают складчатые дислокации (рис. 31).

Все формы складчатых дислокаций образуются без разрыва сплошности слоев (пластов). Это их характерная особенность. Основными среди этих дислокаций являются: моноклиналь, флексура, антиклиналь и синклиналь.

Моноклиналь является самой простой формой нарушения пер­воначального залегания пород и выражается в общем наклоне слоев в одну сторону (рис. 32).

Флексура — коленоподобная складка, образующаяся при сме­щении одной части толщи пород относительно другой без разры­ва сплошности.

Антиклиналь — складка, обращенная своей вершиной вверх (рис. 33), и синклиналь — складка с вершиной, обращенной вниз (рис. 34, 35). Бока складок называют крыльями, вершины — зам­ком, а внутреннюю часть — ядром.

Следует отметить, что горные породы в вершинах складок всег­да бывают трещиноваты, а иногда даже раздроблены.

Разрывные движения. В результате интенсивных тектонических движений могут происходить разрывы сплошности пластов. Разо­рванные части пластов смещаются относительно друг друга. Сме­щение происходит по плоскости разрыва, которая проявляется в виде трещины. Величина амплитуды смещения бывает различ­ной — от сантиметров до километров. К разрывным дислокациям относит сбросы, взбросы, горсты, грабены и надвиги

Сброс образуется в результате опускания одной части толщи относительно другой (рис. 38, а). Если при разрыве происходит поднятие, то образуется взброс Иногда на одном участке образуется несколько разрывов. В этом случае возникают ступенчатые сбросы (или взбросы).

Грабен возникает, когда участок земной коры опускается меж­ду двумя крупными разрывами. Таким путем, например, образо­валось озеро Байкал. Некоторые специалисты считают Байкал началом образования нового рифта.

Горст — форма, обратная грабену.

Надвиг в втличке от предыдущих форм разрывных дислока­ций возникает при смещении толщ в горизонтальной или срав­нительно наклонной плоскости (рис.

19 Наличие дислокаций усложняет инженерно-геологические ус­ловия строительных площадок — нарушается однородность грун­тов оснований сооружений, образуются зоны дробления, снижает­ся прочность грунтов, по трещинам разрывов периодически происходят смещения, циркулируют подземные воды. При крутом падении пластов сооружение может располагаться одновременно на различных фунтах, что иногда приводит к неравномерной сжи­маемости слоев и деформации сооружений. Для зданий неблаго­приятным условием является сложный характер складок. Нежела­тельно располагать сооружения на линиях разломов.

20 Грунтоведение — это наука о грунтах. Понятие «грунт» до сих пор является неоднозначным, вокруг него ведется много споров, и до конца вопрос определения этого термина еще не решен.

Например, одним таким определением является следующее: грунты — это любые горные породы (магматические, осадочные, метаморфические) и твердые отходы производства, залегающие на поверхности земной коры и входящие в сферу воздействия на них человека при строительстве зданий, сооружений, дорог и других объектов. На прочность грунтов влияют: минеральный состав, характер структурных связей, трещиноватость, степень выветрелости, сте­пень размягчаемости в воде и др. Для нескальных грунтов другой важной характеристикой прочности является сопротивление сдви­гу. Определение этого показателя необходимо для расчета устой­чивости оснований, т. е. несущей способности, а также для оцен­ки устойчивости грунтов в откосах строительных котлованов, расчета давления грунта на подпорные стены и т. д. Сопротивле­ние сдвигу оценивается силами внутреннего сдвига ф, град., и сцепления С, кПа. Под первыми понимают силы сопротивления, которые возникают между соприкасающимися друг с другом час­тями грунта, а под вторыми — сопротивление структурных связей грунта всякому перемещению слагающих частиц.

Прочность грунтов. К числу наиболее важных физико-механи­ческих свойств грунтов относят их прочность. Прочностные ха­рактеристики грунтов являются определяющими при решении инженерно-геологических задач, возникающих при оценке осно­ваний, проектировании, строительстве и эксплуатации фундамен­тов сооружений. Сопротивление грунтов сдвигу является их важ­нейшим прочностным свойством. Под действием некоторой внешней нагрузки в определенных зонах грунта связи между час­тицами разрушаются и происходит смещение (сдвиг) одних час­тиц относительно других — грунт приобретает способность нео­граниченно деформироваться под данной нагрузкой. Разрушение грунта происходит в виде перемещений одной части грунтового массива или слоистой толщи относительно другой (к числу при­меров, часто возникающих в строительной практике, можно от­нести оползание откосов строительных котлованов и других вые­мок, «выпор» грунта из-под сооружений).

Сопротивление грунтов сдвигу в определенном диапазоне дав­лений (от десятых долей до целых единиц МПа) может быть описано линейной зависимостью Кулона. Величины ф и С являются параметрами зависимости сопро­тивления грунтов сдвигу, которые необходимы для инженерных расчетов прочности и устойчивости массивов грунтов.

Подробное рассмотрение процессов формирования прочности различных грунтов на основе обобщения результатов многочис­ленных экспериментальных исследований привело специалистов к выводу о том, что параметры прочности (ф и Q не являются однозначными факторами в формировании сопротивления сдвигу для глинистых и песчаных грунтов. Так, для песков основную роль играет внутреннее трение, выражаемое коэффициентом внутрен­него трения 1§ф, сцепление же носит подчиненный характер, главным образом, это сцепление-зацепление между отдельными частицами, вторичные цементационные связи между пленками на поверхности песчаных частиц. Сцепление в песках обусловле­но, таким образом, морфоскопическими особенностями их зерен. В глинистых грунтах главная роль принадлежит сцеплению С, в силу развитых внутренних связей различного характера и приро­ды в этих грунтах. Несколько упрощая вопросы формирования прочности в грунтах различного состава и строения, можно условно записать, что в зависимости Кулона в глинах коэффици­ент внутреннего трения tgcp стремится к нулю, а в песках, в свою очередь, сцепление С стремится к нулю.

Минеральный состав песков и глин определяет характер со­противления их сдвигу; для глинистых грунтов характерно сопро­тивление их одноосному сжатию и разрыву. Содержание в песках слюд, хлорита, талька и других минералов, характеризующихся низкими показателями трения, снижает сопротивление таких песков сдвигу. Наименьшее сопротивление сдвигу и сжимаемость характерны для монтмориллонитовых глин.

Исключение составляют глины в воздушно-сухом состоянии, по изложенным выше причинам. Наибольшее сопротивление на одноосное сжатие и разрыв будет присуще тем же глинам, благо­даря дегидратации, обусловливающей образование в фунте мак­симума контактов, проявляющихся в степени развития ион­но-электростатических связей.

Физико-механические свойства дисперсных фунтов зависят, таким образом, от соотношения твердой и жидкой минеральных компонент фунта. В последнее время получены данные о влия­нии на физико-механические свойства органики (гумуса) элемен­тов биоты и газовой компоненты и о чрезвычайно важной роли в этом структурно-текстурных особенностей дисперсных фунтов. К примеру, как это уже отмечалось, глинистые фунты обладают сопротивлением сжатию и на разрыв, в песчаных фунтах послед­нее свойство практически не проявляется.

Формирование физико-механических свойств скальных фун­тов имеет свои специфические особенности, весьма важные и необходимые для познания их природы и прогноза проявления. При изучении скальных горных пород важно установить содер­жание в них породообразующих минералов. Наибольшее значе­ние имеют минералы класса первичных силикатов — полевые шпаты, пироксены, амфиболы, оливин и др. С определенной условностью к ним относят кварц, у которого, как известно, пре­обладают внутрикристаллические связи. Ифают роль и простые соли: карбонаты, сульфаты, галоиды имеют ионный тип связей, которые существуют внутри самих минералов (атомов, ионов, ра­дикалов). Свойства же минералов передаются свойствам фунтов.

Наибольшее значение для скальных пород имеет их трещино­ватость. К скальным породам с кристаллическими и структурны­ми связями относятся, главным образом, магматические и мета­морфические. При пористости 1—5 % эти породы могут характеризоваться трещинной системой объемом в 10—20 %. Очевидно, что водопроницаемость трещиноватых фунтов, физи­ко-механические свойства определяются не столько их пористо­стью, сколько трещиноватостью.

В настоящее время выделяют различные генетические типы трещин:

первичной отдельности, или литогенетические, обычно тон­кие, чистые от заполнителя, закономерно ориентированные;

выветривания, иногда значительные по размерам, затухаю­щие с глубиной, с различным по составу заполнителем;

тектонического происхождения, различного, иногда весьма значительного размера, незатухающие с глубиной, с различным за­полнителем или без него.

Иногда выделяют также специфические трещины исключите­льно сейсмогенного происхождения. Для характеристики трещи­новатости разработаны специальные приемы, описывающие их ориентированность, размеры и другие параметры.

Трещины подразделяют на тонкие (менее 1 мм), мелкие (1—5 мм), средние (5—20 мм), крупные (20—100 мм) и очень крупные (более 100 мм).

Высокая прочность магматических и метаморфических пород, как уже отмечалось, объясняется наличием структурных кристал­лизационных связей химической природы. Под воздействием факторов выветривания магматические и метаморфические гор­ные породы разрушаются; если физическое выветривание преоб­ладает над химическим и разрушение сводится в основном к дроблению фунтов, то при участии процессов денудации из вы­ходящих на поверхность фунтов образуются крупнообломочные и песчаные породы со слабыми молекулярными, капиллярными и электростатическими структурными связями. В случае, когда химическое выветривание преобладает над физическим, из на­званных горных пород формируются чаще всего глинистые и, может быть, лессовые, но скорее всего пылеватые породы с чрез­вычайно разнообразными свойствами.

Примечательно, что скальные фунты, представленные карбо­натными, сульфатными и галоидными породами, сцементирован­ными, крупнообломочными и мелкообломочными породами, пес­чаниками, характеризуются в свойствах степенью литификации, качеством и количеством цемента для последних.

При характеристике деформационных свойств скальных фун­тов принимают во внимание модуль деформации Е, модуль упру­гости Еу и модуль общей деформации Е0. Модуль упругости ра­вен отношению напряжения т при одноосном сжатии к относительной обратимой деформации.

Для упругодеформируемого материала модуль упругости и мо­дуль общей деформации устанавливаются для определенной ве­личины и продолжительности действия давления.

Модуль упругости и модуль общей деформации зависят от ха­рактера фунта и его структуры: для скальных пород Еу/Е0 ~ 2. По­казателем деформационных характеристик скальных фунтов слу­жит также коэффициент Пуассона ц, определяющий, в какой мере происходит изменение объема фунта в процессе деформации.

Коэффициент Пуассона представляет собой собственно харак­теристику упругой деформации, зависящую в основном от свойств породообразующих минералов. Эта характеристика поро­дообразующих минералов изменяется в широком диапазоне от 0,08 до 0,34, что определяется особенностями кристаллической решетки и направлением реализации напряжений относительно кристаллофафических осей. Коэффициент Пуассона зависит от минералогического состава фунта, пористости и трещиноватости.

Кроме отмеченного влияния на свойства скальных фунтов трещиноватости, очень велико воздействие на них степени вы­ветрелости скальных грунтов. Например, степени размягчаемости 182 в воде скальных грунтов — отношения временных сопротивлений к одноосному сжатию в водонасыщенном Д;И в воздушно-сухом Rs состояниях.

Следует отметить, что временное сопротивление фунта, осо­бенно скального, одноосному сжатию, или предел прочности на сжатие ЛсЖ, является чрезвычайно важной классификационной ха­рактеристикой, согласно которой проводится отнесение фунта к скальному (> 5 МПа) или нескальному (< 5 МПа). Естественно, эта характеристика описывает фунт в образце в измененных (при отсутствии естественного напряженного состояния) условиях.

21 Геологические свойства грунтов. Физические свойства грунтов. Инженерно-геологические свой­ства горных пород являются весьма емким понятием, охватываю­щим их физические, водно-физические и механические свойства. Определение этих свойств, назначение их расчетных значений при проектировании оснований и фундаментов различных соору­жений, прогноз их изменений во времени и являются основной конечной целью грунтоведения. При определении параметров свойств грунтов возникают конкретные задачи, решаемые раз­личными способами и методами грунтоведческих исследований, для которых разработаны конкретные методики, приборы и обо­рудование.

Физические свойства горных пород естественно охватывают все их генетические классы от магматических и метаморфических до обломочных и тонкодисперсных осадочных. Однако в связи с тем, что в строительной практике чаще всего приходится иметь 170 дело с рыхлыми дисперсными породами, а также в связи с тем, что эти породы обладают значительной изменчивостью свойств, рассмотрение характеристик свойств грунтов мы будем проводить в основном для этих грунтов.

Отметим вначале наиболее характерные физические свойства горных пород, согласно ГОСТ 25100—95. К числу наиболее важ­ных характеристик относятся плотность и пористость породы.

Плотность грунта — это отношение массы породы, включая массу воды в ее порах, к занимаемому этой породой объему. Плотность породы зависит от минералогического состава, влаж­ности и характера сложения (пористости)

Плотностью частиц грунта называют отношение массы сухо­го грунта, исключая массу воды в его порах, к объему твердой части этого грунта.

Плотность частиц грунта изменяется для всех горных пород в небольших пределах от 2,61 до 2,75 г/см3 и для каждой генетиче­ской разности породы определяется только ее минералогическим составом.

Удельный вес грунта характеризует отношение веса грунта, включая вес воды в его порах, к занимаемому этим фунтом объ­ему, включая поры.

Плотность скелета породы, или плотность сухого фунта, представляет собой отношение массы минеральных частиц поро­ды (твердой части фунта) при естественной структуре, исключая массу воды в его порах, к занимаемому этой породой объему.

Плотность скелета породы — величина более постоянная по сравнению с плотностью породы.

Удельный вес частиц грунта характеризует отношение веса су­хого грунта к объему его твердой части.

Удельный вес сухого грунта характеризует отношение веса су­хого фунта ко всему занимаемому этим фунтом объему.

Физические значения плотности применяют для характери­стики физических свойств горной породы фунта основания или строительного материала, а также в динамических расчетах осно­ваний.

Физические значения удельного веса используют непосредст­венно в остальных расчетах оснований, в частности при опреде­лении природного давления, при расчете осадки.

Пористость пород представляет собой характеристику пустот или свободных промежутков между минеральными частицами, составляющими породу.

Пористость обычно выражают в виде процентного отношения объема пустот к общему объему породы:

Приведенной пористостью, или коэффициентом пористости, называют отношение объема пустот (пор) к объему твердых ми­неральных частиц породы.

Водно-физические свойства грунтов. Влажностью породы W на­зывают отношение массы воды, содержащейся в порах породы, к массе сухой породы (высушивание образца должно производить­ся в термошкафу при t= Ю5...107°С в течение 8 ч и более).

Влажность породы, кроме того что она является физическим свойством породы, служит важнейшей характеристикой ее физи­ческого состояния, определяющей прочность, деформируемость и другие свойства при использовании в инженерных целях.

Под естественной (весовой) влажностью породы W, %, пони­мается количество воды, содержащееся в породе в естественных условиях:

Максимально возможное содержание в грунте связанной, ка­пиллярной, фавитационной воды при полном заполнении пор на­зывают полной влагоемкостъю породы.

Под гигроскопической влажностью Wr понимают влажность воздушно-сухого фунта. Степенью влажности, или относительной влажностью, называют степень заполнения пор фунта водой и характеризуется отношением объема воды к объему пор.

По степени водонасыщенности все рыхлые породы подразде­ляют на четыре основные группы.

Максимальная молекулярная влагоемкость характеризует содер­жание прочносвязанной, рыхлосвязанной воды и воды ближней гидратации, т. е. влажность фунта при максимальной толщине пленок связанной воды вокруг минеральных частиц WM MB. Ее определяют центрифугированием для глинистых фунтов, а для песчаных и супесчаных фунтов — способом высоких колонн.

Пластичность — способность породы изменять под действием внешних сил (давления) свою форму, т. е. деформироваться без разрыва сплошности и сохранять полученную форму, после того как действие внешней силы прекратилось, — является характери­стикой, во многом определяющей деформируемость.

Деформируемость глинистых пород под действием давления зависит от их консистенции (относительной влажности). Для то­го чтобы выразить в численных показателях пределы влажности породы, при которой она обладает пластичностью, введены по­нятия о нижнем и верхнем пределах пластичности.

Нижним пределом пластичности Wp, или границей раскатыва­ния, называют такую степень влажности глинистой породы, при которой глинистая масса, замешанная на дистиллированной во­де, при раскатывании ее в жгутик диаметром 3 мм начинает кро­шиться вследствие потери пластических свойств, т. е. такая влаж­ность, при которой связный фунт переходит из твердого состояния в пластичное.

Верхний предел пластичности W/, или граница текучести, пред­ставляет собой такую степень влажности глинистой породы, при которой глинистая масса, положенная в фарфоровую чашку и разрезанная глубокой бороздой, сливается после трех легких тол­чков чашки ладонью. При большей степени влажности глинистая масса течет без встряхивания или при одном-двух толчках, т. е. такая степень влажности, при которой связный фунт переходит из пластичного состояния в текучее.

Деформационные и прочностные свойства грунтов и их характе­ристики. Расчет оснований сооружений, проектирование фунда­ментов, качественных насыпей, создание проектов производства работ, оценка и прогноз эксплуатации оснований и фундаментов, а в конечном итоге и сооружений; выяснение причин развития и активизации природных геологических и инженерно-геологиче­ских процессов и явлений невозможны без определения физи­ко-механических свойств фунтов, наиболее важными из которых являются деформационные и прочностные.

23 -24)Геоморфология и инженерная геология. Изложение основных представлений из геоморфологии и изучение динамики земли убеждает в том, что для правильного решения инженерно-геологических задач необходимо проводить почти полный цикл геоморфологических исследований, особенно динамики экзогенных сил. Так, в настоящее время для инженерного проектирования совершенно недостаточно обоснования выбора места для строительства объекта с точки зрения механики грунтов и общей оценки геологического строения местности. Поэтому возникает вопрос о создании новой отрасли знаний на стыке инженерной геологии и геоморфологии — инженерной геоморфологии.

Эта наука должна будет заниматься исследованием и оценкой рельефообразующих процессов и форм рельефа для поиска оптимального варианта размещения инженерно-строительных сооружений, обеспечения их рациональной и эффективной эксплуатации и защиты от разрушительных стихийных процессов.

Основной задачей инженерной геоморфологии является изучение состояния динамического равновесия рельефа, выявление степени его устойчивости и прогнозирование изменений форм его в результате строительства. Такие прогнозы необходимы не только для выбора оптимального варианта размещения объекта, но и для гарантии его безаварийной службы.

В период проектирования зданий и сооружений инженер строитель должен четко представлять задачи, которые следует решать геоморфологически:

• определять пригодность данного рельефа как такового, так и в динамике его изменения для строительства;

• устанавливать форму и тип рельефа;

• определять происхождение рельефа в целях выяснения его устойчивости во времени;

• определять возможную скорость изменения форм рельефа на строительной территории, т. е. составлять прогноз на будущее, на период эксплуатации объекта (например, скорость размыва берега и дна реки, рост оврагов и т. д.);

• устанавливать, как динамика рельефа может повлиять на устойчивость объекта и возможности его бесперебойного функционирования.

25 Воды, находящиеся в верхней части земной коры, носят название подземных. Науку о подземных водах, их происхождении, условиях залегания, законах движения, физических и химических свойствах, связях с атмосферными и поверхностными водами называют гидрогеологией.

Для строителей подземные воды в одних случаях служат источником водоснабжения, а в других выступают как фактор, затрудняющий строительство. Особенно сложным является производство земляных и горных работ в условиях притока подземных вод, затапливающих котлованы, карьеры, траншеи, подземные горные выработки: шахты, штольни, туннели, галереи и т.п. Подземные воды ухудшают механические свойства рыхлых и глинистых пород, могут выступать в роли агрессивной среды по отношению к строительным материалам, вызывают растворение многих горных пород (гипс, известняк и др.) с образованием пустот и т. д.

Строители должны изучать подземные воды и использовать их в производственных целях, уметь сопротивляться их негатив¬ному воздействию при строительстве и эксплуатации зданий и сооружений.

26-27 Влагоемкость — способность породы вмещать и удерживать в себе воду. В том случае, когда все поры заполнены водой, порода будет находиться в состоянии полного насыщения. Влажность, отвечающая этому состоянию, называют полной влагоемкостью

Наибольшее значение fVnB совпадает с величиной пористости породы. По степени влагоемкости породы подразделяют на весьма влагоемкие (торф, суглинки, глины), слабовлагоемкие (мергель, мел, рыхлые песчаники, мелкие пески, лёсс) и невлагоемкие, не удерживающие в себе воду (галечник, гравий, песок).

Водоотдача WB — способность пород, насыщенных водой, отдавать гравитационную воду в виде свободного стока. При этом считают, что физически связанная вода из пор породы не вытекает, поэтому принимают WB = WUB

Величина водоотдачи может быть выражена процентным от-ношением объема свободно вытекающей из породы воды к объему породы или количеством воды, вытекающей из 1 м3 породы (удельная водоотдача). Наибольшей водоотдачей обладают крупнообломочные породы, а также пески и супеси, в которых величина WB колеблется от 25 до 43 %. Эти породы под влиянием гравитации способны отдавать почти всю имеющуюся в их порах воду. В глинах водоотдача близка к нулю.

Водопроницаемость — способность пород пропускать гравитационную воду через поры (рыхлые породы) и трещины (плотные породы). Чем больше размер пор или чем крупнее трещины, тем выше водопроницаемость пород. Не всякая порода, которой присуща пористость, способна пропускать воду, например, глина с пористостью 50—60 % воду практически не пропускает.

Водопроницаемость пород (или их фильтрационные свойства) характеризуется коэффициентом фильтрации кф (см/с, м/ч или м/сут), представляющим собой скорость движения подземной воды при гидравлическом градиенте, равном 1.

По величине кф породы разделяют на три группы:

1) водопроницаемые — кф > 1 м/сут (галечники, гравий, песок, трещиноватые породы);

2) полупроницаемые — кф = 1...0,001 м/сут (глинистые пески, лесс, торф, рыхлые разности песчаников, реже пористые известняки, мергели);

3) непроницаемые — кф < 0,001 м/сут (массивные породы, глины). Непроницаемые породы принято называть водоупорами, а полупроницаемые и водопроницаемые — единым термином водопроницаемые, или водоносными, горизонтами.

В фильтрации может принимать участие вода в связанном со-стоянии. Так, в глинах ее приводят в состояние движения увеличением разности напоров (градиента фильтрации), действием электро- и термоосмотических сил.

Вопрос 28. Водоносный горизонт - это слой грунта, который содержит в порах или трещинах значительное количество воды. Отметим, что вода может двигаться через водоносный горизонт, причем относительно быстро. Водоупором называется слой, который практически не пропускает через себя воду. При этом водоупорный слой может как содержать в себе воду (например, глина) так и не содержать ее совсем (например, монолитный скальный грунт).

Водоносный горизонт можно рассматривать, как подземную емкость (резервуар). Вода попадает туда либо естественным путем - инфильтрующиеся атмосферные осадки, разгрузка из выше- или нижележащих горизонтов, рек, озер - либо искусственным, через нагнетательные скважины. Вода покидает такой резервуар также либо естественным путем - сток в реки, озера, другие слои, на поверхность (источники) - либо искусственным, через откачивающие скважины (рис.1). Напорный горизонт (пласт), часто называемый артезианским, ограничен сверху и снизу водонепроницаемыми отложениями. Если такой водоносный горизонт вскрывается буровой скважиной, вода в ней поднимается вверх и иногда может даже изливаться на земную поверхность. Уровень воды в скважинах, вскрывающих напорный водоносный горизонт, соответствует некой воображаемой поверхности, которая называется пьезометрической, или напорной.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]