Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matan_teoremy_Izdatelstvo_-_chit (новое).docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
54.97 Кб
Скачать

12. Достаточные условия выпуклости вогнутости

Если функция у = f(х) дважды дифференцируема на некотором промежутке (а, b), причем f "(х) < 0) для любого х Э (а, b), то на этом промежутке график функции выпуклый, если f "(х) > 0, то график функции вогнутый на промежутке (а, b).

Доказательство. Возьмем произвольную точку х0 Э (а,b) и проведем касательную в точке х0.

Теорема будет доказана, если установим, что все точки графика функции f(x) лежат ниже (выше) касательной A x Э(a,b).

График функции f(x) по формуле Тейлора можно представить в виде: f(x) = f(x0) + f '(x0)(х0)+( f "(x0)(x 0)2)/2!, х<с<х0.

Остаточный член записан в форме Лагранжа.

Уравнение касательной проведенной через точку х0 запишем в виде:

yкас = f(x0) + f '(x0)(x-x0).

Рассмотрим разность ординат кривой и касательной при одном и том же значении х:

f(x)-yкас = (f "(c)(x-x0)2)/2!

Если f "(c) > 0, то f(x) - укас >= 0, следовательно, f(x) >= укас. Т. е. кривая f{x) выше касательной для любого х Э (а,b), вогнутая.

Если f "(c)<0, то f(x)-yKac<=0, следовательно, f(x)<=yKac. Т.е. кривая f(x) ниже касательной для любого х Э (а,b), выпуклая.

13. Критерий существования наклонной асимптоты

Для того чтобы прямая y = kx + b была наклонной асимптотой не­обходимо и достаточно, чтобы существовали пределы

lim f(x)/x = k, lim [f(x)-kx] = b.

х->± ∞ х->± ∞

Доказательство.

Необходимость. Пусть y= kx + b наклонная осимптота при х→+∞. Тогда имеет место равенство f(x) = kx + b + α(x), α(x)→0 при x→+∞. Рассмотрим

Lim (x→+∞) = {f(x)/x = kx + b + α(x) / x = ( k + b/x + α(x) / x )} = k

Рассмотрим

Lim(x→+∞) [ f(x) – kx ] = Lim(x→+∞) [ b + α(x) ] = b

Таким образом, если прямая y = kx + b наклонная асимптота, то пределы существуют.

Достаточность. Пусть существуют пределы

Lim (x→+∞) f(x) / x = k и Lim (x→+∞) [ f(x) – kx ] = b.

Тогда из второго равенства следует, что

F(x) – kx = b + α(x) , где α(x)→0 при х→+∞, т.е. f(x) = kx + b + α(x) и y = kx +b наклонная осимптота.

Аналогично рассматривается случай x→-∞

14. Теорема об инвариантности формы первого дифференциала функции двух переменных

Если функция z = f(x;y) дифференцируема в точке (xo;yo) и имеет в этой точке частные производные, тогда

dz = dx + dy

т.е. форма записи полного дифференциала функции z = f(x;y) двух (и более) переменных не зависит от того, является ли x и y независимыми переменными , или функциями других независимых переменных.

Д-во:

Пусть z = f(x(u;v);y(u;v)) .

Найдем dz = du + dv = du + dv =

+ = dx + dy

15. Понятие градиента. Свойства градиента (3 свойства доказать)

Градие́нт (gradientis — шагающий, растущий) — вектор, своим направлением указывающий направление наискорейшего возрастания некоторой величины  , значение которой меняется от одной точки пространства к другой (скалярного поля), а по величине (модулю) равный быстроте роста этой величины в этом направлении.

Пусть дана функция . U=f(x,y,z) определенная и дифференцируема в некоторой области Д.

Градиентом функции называется вектор проекции которого на оси координат равны соответствующим частным производным.

grad U=(∂U/∂х)i+(∂U/∂у)j+(∂U/∂z)k

Линией уровня называется линия на которой функция принимает постоянное значение u(x,y)=с. Геометрический смысл градиента состоит в том что градиент указывает направление наибольшего изменения функции.

Свойства градиента:

1. Производная по направлению имеет МАХ значение в направлении совпадающем с градиентом.

2. Производная в направлении ⊥ градиенту равно 0.

3. Градиент ⊥ линиям уровня.

Доказательство:

1) U’L(M0) = |grad U (M0)| * cos (grad U (M0) ^ L0) => U’L(M0) имеет максимальное значение при cos (grad U (M0) ^ L0) = cos 0 = 1 => grad сонаправлен с L0 => U’L(M0)max = |grad U (M0)|, a U’L(M0)min = -|grad U (M0)|

Ч.т.д.

2) Исходя из доказательства первого, имеем: U’L(M0) = |grad U (M0)| * cos (grad U (M0) ^ L0). Если направление перпендикулярно grad, то угол равен Pi/2 => cos Pi/2 = 0 => U’L(M0) = 0

3)U(M) = const, то есть U(x, y, z) = const – поверхность уровня. Координаты вектора нормали к U(M) в M0 :

N = {U’x(M0); U’y(M0); U’z(M0)} - они же координаты градиента в точке M0 . Ч.т.д.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]