
- •Oдноатомные спирты
- •Номенклатура
- •Получение одноатомных спиртов
- •1.Гидратация алкенов
- •2. Гидроксимеркурирование-демеркурирование алкенов
- •3. Гидроборирование алкенов с последующим окислением
- •4. Восстановление альдегидов и кетонов алюмогидридом лития или боргидридом натрия
- •5. Восстановление сложных эфиров и карбоновых кислот до первичных спиртов
- •6. Синтез спиртов из карбонильных соединений с помощью магнийорганических соединений
- •7. Восстановление эпоксидов (оксиранов) с помощью алюмогидрида лития
- •8. Взаимодействие алкилгалогенидов и алкилтозилатов с супероксидом калия
- •III.Свойства одноатомных спиртов
- •1. Спирты как слабые oh-кислоты
- •2. Замещение гидроксильной группы на галоген
- •А. Получение алкилгалогенидов из спирта и галогеноводородов
- •Б. Получение алкилгалогенидов из спиртов и галогенидов фосфора
- •В.Получение алкилхлоридов из спиртов и тионилхлорида
- •Г. Получение алкилгалогенидов из спиртов и квазифосфониевых солей
- •Д. Замещение сульфонатной группы в алкилсульфонатах на галоген
- •3.Дегидратация спиртов
- •4. Получение простых эфиров по Вильямсону
- •5.Окисление спиртов
- •6. Защитные группы для гидроксильной группы
- •Двухатомные спирты
- •I. Получение диолов
- •2. Свойства диолов
- •1.Дегидратация
- •2. Окислительное расщепление 1,2-диолов
- •Простые эфиры номенклатура
- •2.Получение простых эфиров
- •А. Межмолекулярная дегидратация спиртов
- •Б. Алкоксимеркурирование алкенов
- •Синтез простых эфиров по Вильямсону
- •III. Свойства простых эфиров
- •1. Кислотное расщепление простых эфиров
- •2. Радикальные реакции простых эфиров
- •Оксираны (эпоксиды)
- •Получение оксиранов
- •II. Свойства оксиранов
- •Тиолы, сульфиды, сульфоксиды и сульфоны тиолы и сульфиды
- •I. Получение тиолов
- •II. Свойства тиолов
- •1. Фенолы
- •1.1. Введение
- •2. Получение фенолов
- •2.1. Замещение сульфогруппы на гидроксил
- •2.2.Замещение галогена на гидроксил
- •2.3. Замещение диазогруппы на гидроксил
- •2.4. Получение фенола из гидропероксида кумола
- •3. Свойства фенолов
- •3.1. Кислотные свойства фенолов
- •Величины рКа орто-, мета- и пара-замещенных фенолов в воде при 25оС
- •Величины рКа некоторых полизамещенных фенолов и нафтолов
- •3.2. Таутомерия фенолов
- •3.4. Этерификация фенолов
- •3.5. Реакции электрофильного замещения в ароматическом кольце фенола
- •3.5.1. Галогенирование фенолов
- •3.5.2. Нитрование фенолов
- •3.5.3. Сульфирование фенолов
- •3.5.4. Нитрозирование фенолов
- •3.5.5. Алкилирование и ацилирование фенолов по Фриделю-Крафтсу
- •3.5.6. Формилирование фенолов
- •3.5.6А. Реакция Гаттермана
- •3.5.6Б. Реакция Вильсмейера-Хаака
- •3.5.6В. Реакция Реймера-Тимана
- •3.5.7. Конденсация фенолов с альдегидами и кетонами
- •3.5.8. Карбоксилирование феноксид-ионов - реакция Кольбе
- •3.5.9. Азосочетание
- •3.6. Перегруппировка Кляйзена аллилариловых эфиров
- •3.7. Окисление фенолов
- •4. Хиноны
- •4.1. Получение хинонов
- •4.2. Химические свойства хинонов
- •4.2.1.Восстановление хинонов
- •Величины нормальных редокс-потенциалов Ео некоторых хинонов в воде при 25оС
- •4.2.2. Хиноны как дегидрирующие агенты
- •4.2.3. Хиноны как , -непредельные кетоны
- •4.2.4. Хиноны как диенофилы в реакции диенового синтеза
4.2.2. Хиноны как дегидрирующие агенты
Легкость восстановления хинонов до фенола открывает возможность для использования хинонов в качестве дегидрирующих агентов. Для этой цели выбирают хиноны с высоким окислительно-восстановительным потенциалом, такие как 2,3,5,6-тетрахлор-1,4-бензохинон (хлоранил); 2,3-дихлор-5,6-дициано-1,4-бензохинон (ДДХ), дифенохинон. 1,2-Хиноны ввиду нестабильности практически не используются в качестве дегидрирующих агентов. Дегидрированию подвергаются дигидроароматические соединения ряда бензола и тетрагидропроизводные ряда нафталина, антрацена, гетероциклических соединений, тропилиден и т.д.
Механизм дегидрирования углеводородов заключается в отщеплении хиноном гидрид-иона с образованием карбокатиона, который стабилизируется отщеплением протона. Поэтому дегидрированию подвергаются углеводороды, которые при отщеплении гидрид-иона образуют сравнительно стабильные карбокатионы.
4.2.3. Хиноны как , -непредельные кетоны
1,4-Хиноны представляют собой типичные , -ненасыщенные кетоны и для них характерны реакции 1,2- и 1,4-присоединения к сопряженной системе. 1,4-Бензохинон присоединяет хлористый водород в 1,4-положение с образованием 2-хлоргидрохинона.
2-Хлоргидрохинон окисляется исходным хиноном до 2-хлор-1,4-бензохинона, который вновь присоединяет HCl с образованием 2,3-дихлоргидрохинона.
Этот прием используется для синтеза 2,3-дихлор-5,6-дициано-1,4-бензохинона (ДДХ).
Вместе с тем 1,4-хиноны вступают в типичные реакции 1,2-присоединения по карбонильной группе и с гидроксиламином дают моно- и диоксимы. Однако для первичных аминов характерно сопряженное присоединение к 1,4-хинонам. При взаимодействии 1,4-бензохинона с анилином получается 2,5-бис(фениламино)-1,4-бензохинон.
Аналогично происходит присоединение к 1,4-бензохинону и 1,4-нафтохинону тиолов, малонового и циануксусного эфиров.
4.2.4. Хиноны как диенофилы в реакции диенового синтеза
1,4-Бензохинон, 1,4-нафтохинон и их производные проявляют свойства активных диенофилов в реакции Дильса-Альдера. При взаимодействии 1,3-бутадиена с 1,4-бензохиноном при 25оС получается моноаддукт, который медленно енолизуется с образованием соответствующего гидрохинона. Это превращение, как и следовало ожидать, катализируется кислотой. При последующем окислении оксидом хрома (YI) получается 1,4-нафтохинон.
При нагревании 1,4-бензохинон присоединяет по двум двойным связям две молекулы 1,3-бутадиена. Стереохимия циклоприсоединения циклопентадиена к 1,4-бензохинону иллюстрирует высокую стереоселективность диенового синтеза с участием хинонов. Из четырех возможных стереоизомеров получается только эндо-цис-аддукт 1:1. Присоединение второй молекулы циклопентадиена происходит также стереоспецифично.
Электроноакцепторные заместители в хиноне активируют диенофил, а электронодонорные заместители замедляют присоединение 1,3- диенов. ДДХ и 1,2,3,5-тетрациан-1,4-бензохинон исключительно эффективны в качестве диенофилов. Диеновый синтез с участием 1,4-бензохинона используется для получения полициклических конденсированных ароматических углеводородов. В качестве примера приведем синтез пентацена из 1,2-диметиленциклогексана и 1,4-бензохинона.
Заключение
В заключение этого раздела следует отметить, что на протяжении длительного времени хиноны привлекали к себе интерес в производстве огромного количества высококачественных антрахиноновых красителей. Они широко использовались в качестве дегидрирующих агентов. В настоящее время интерес к этому классу соединений снова возрос после того, как было установлено, что целая группа хинонов играет жизненно важную роль переносчика электронов в дыхательных и фотохимических цепях биологических систем. В живых организмах эту роль транспорта электронов в дыхательных цепях в клетках выполняет группа коферментов Q, называемых убихинонами. В природе встречается несколько коферментов Q. Они отличаются друг от друга лишь числом изопреновых единиц, связанных с бензохиноновым кольцом. В организме человека важную роль играет кофермент Q10 (см. вводную часть к данному разделу). Подробные сведения о механизме действия хиноновых коферментов в аэробных системах можно найти в учебниках и монографиях по биоорганической химии.