
- •Oдноатомные спирты
- •Номенклатура
- •Получение одноатомных спиртов
- •1.Гидратация алкенов
- •2. Гидроксимеркурирование-демеркурирование алкенов
- •3. Гидроборирование алкенов с последующим окислением
- •4. Восстановление альдегидов и кетонов алюмогидридом лития или боргидридом натрия
- •5. Восстановление сложных эфиров и карбоновых кислот до первичных спиртов
- •6. Синтез спиртов из карбонильных соединений с помощью магнийорганических соединений
- •7. Восстановление эпоксидов (оксиранов) с помощью алюмогидрида лития
- •8. Взаимодействие алкилгалогенидов и алкилтозилатов с супероксидом калия
- •III.Свойства одноатомных спиртов
- •1. Спирты как слабые oh-кислоты
- •2. Замещение гидроксильной группы на галоген
- •А. Получение алкилгалогенидов из спирта и галогеноводородов
- •Б. Получение алкилгалогенидов из спиртов и галогенидов фосфора
- •В.Получение алкилхлоридов из спиртов и тионилхлорида
- •Г. Получение алкилгалогенидов из спиртов и квазифосфониевых солей
- •Д. Замещение сульфонатной группы в алкилсульфонатах на галоген
- •3.Дегидратация спиртов
- •4. Получение простых эфиров по Вильямсону
- •5.Окисление спиртов
- •6. Защитные группы для гидроксильной группы
- •Двухатомные спирты
- •I. Получение диолов
- •2. Свойства диолов
- •1.Дегидратация
- •2. Окислительное расщепление 1,2-диолов
- •Простые эфиры номенклатура
- •2.Получение простых эфиров
- •А. Межмолекулярная дегидратация спиртов
- •Б. Алкоксимеркурирование алкенов
- •Синтез простых эфиров по Вильямсону
- •III. Свойства простых эфиров
- •1. Кислотное расщепление простых эфиров
- •2. Радикальные реакции простых эфиров
- •Оксираны (эпоксиды)
- •Получение оксиранов
- •II. Свойства оксиранов
- •Тиолы, сульфиды, сульфоксиды и сульфоны тиолы и сульфиды
- •I. Получение тиолов
- •II. Свойства тиолов
- •1. Фенолы
- •1.1. Введение
- •2. Получение фенолов
- •2.1. Замещение сульфогруппы на гидроксил
- •2.2.Замещение галогена на гидроксил
- •2.3. Замещение диазогруппы на гидроксил
- •2.4. Получение фенола из гидропероксида кумола
- •3. Свойства фенолов
- •3.1. Кислотные свойства фенолов
- •Величины рКа орто-, мета- и пара-замещенных фенолов в воде при 25оС
- •Величины рКа некоторых полизамещенных фенолов и нафтолов
- •3.2. Таутомерия фенолов
- •3.4. Этерификация фенолов
- •3.5. Реакции электрофильного замещения в ароматическом кольце фенола
- •3.5.1. Галогенирование фенолов
- •3.5.2. Нитрование фенолов
- •3.5.3. Сульфирование фенолов
- •3.5.4. Нитрозирование фенолов
- •3.5.5. Алкилирование и ацилирование фенолов по Фриделю-Крафтсу
- •3.5.6. Формилирование фенолов
- •3.5.6А. Реакция Гаттермана
- •3.5.6Б. Реакция Вильсмейера-Хаака
- •3.5.6В. Реакция Реймера-Тимана
- •3.5.7. Конденсация фенолов с альдегидами и кетонами
- •3.5.8. Карбоксилирование феноксид-ионов - реакция Кольбе
- •3.5.9. Азосочетание
- •3.6. Перегруппировка Кляйзена аллилариловых эфиров
- •3.7. Окисление фенолов
- •4. Хиноны
- •4.1. Получение хинонов
- •4.2. Химические свойства хинонов
- •4.2.1.Восстановление хинонов
- •Величины нормальных редокс-потенциалов Ео некоторых хинонов в воде при 25оС
- •4.2.2. Хиноны как дегидрирующие агенты
- •4.2.3. Хиноны как , -непредельные кетоны
- •4.2.4. Хиноны как диенофилы в реакции диенового синтеза
Величины нормальных редокс-потенциалов Ео некоторых хинонов в воде при 25оС
Хинон |
Ео в мв |
Хинон |
Ео в мв |
1,2-бензохинон |
783 |
2,3-дихлор-1,4-нафтохинон |
499 |
1,4-бензохинон |
700 |
9,10-антрахинон |
130 |
2-метил-1,4-бензохинон |
645 |
1,4-антрахинон |
400 |
2-хлор-1,4-бензохинон |
713 |
9,10-фенантренхинон |
440 |
1,2-нафтохинон |
566 |
1,4-фенантренхинон |
520 |
1,4-нафтохинон |
470 |
1,6-пиренхинон |
610 |
2,6-нафтохинон |
758 |
3,4,5,6-тетрахлор-1,4-бензохинон |
740 |
2-метил-1,4-нафтохинон |
422 |
дифенохинон |
954 |
Из данных, представленных в таблице 3 следует, что 1,2-хиноны более сильные окислители, чем 1,4-хиноны, а бензохиноны превосходят по окислительной способности хиноны нафталинового ряда, которые в свою очередь превосходят антрахиноны и фенантренхиноны. Электроноакцепторные группы усиливают окислительные свойства хинонов. Высокие редокс-потенциалы хинонов определяются тем, что восстановление хинона в двухатомный фенол сопровождается превращением ненасыщенного кетона в ароматическое соединение.
Восстановление хинонов до двухатомных фенолов осложняется образованием хингидрона - аддукта состава 1:1 между хиноном и двухатомным фенолом. Хингидрон может быть окислен до хинона или нацело восстановлен до гидрохинона.
Окрашенный в темнозеленый цвет хингидрон представляет собой классический пример молекулярных комплексов, где один компонент служит донором, а другой - является акцептором электрона. Такие комплексы, где происходит перекрывание ВЗМО донора и НСМО акцептора, получили название комплексов с переносом заряда. К ним относятся -комплексы ароматических соединений с галогенами, катионами серебра и ртути; 1,3,5-тринитробензолом, пикриновой кислотой. Комплексы галогенов или тетрацианоэтилена с n-донорами (спиртами, простыми эфирами) или -донорами - (алкенами или алкинами), также следует рассматривать как комплексы с переносом заряда. В кристаллах хингидрона молекулы хинона и гидрохинона чередуются и располагаются в двух параллельных плоскостях друг над другом. Комплексы с переносом заряда часто интенсивно окрашены. Так, например, тетрацианоэтилен образует с дуролом (1,2,4,5-тетраметилбензолом) комплекс, окрашенный в красный цвет. Окраска комплексов обусловлена переносом заряда от ароматического донора к акцептору, хотя степень переноса заряда невелика и редко превышает 0,1 заряда электрона.
Восстановление хинонов до двухатомных фенолов проводят с помощью самых разнообразных восстановителей, среди которых в лабораторных условиях предпочтение отдается дитиониту натрия Na2S2O4 в щелочной среде.
Помимо дитионита натрия в качестве восстановителей употребляются алюмогидрид лития и боргидрид натрия, хлорид олова (II) в соляной кислоте, цинк в уксусной кислоте и др. В промышленности восстановление 1,4-бензохинона до гидрохинона осуществляется с помощью оксида серы (IY) и железа в воде при 70-80оС.
9,10-Антрахинон при восстановлении дитионитом натрия образует 9,10-антрадиол (антрагидрохинон).
При восстановлении 9,10-антрахинона оловом в смеси соляной и уксусной кислот получается антрон - простейший кетон ряда антрацена.
Восстановление антрахиноновых и других кубовых красителей дитионитом натрия в щелочной среде используется для перевода этих нерастворимых в воде соединений в так называемую лейкоформу, которая в виде динатриевой соли хорошо растворима в воде. Таким образом, например, упомянутый выше индантрен восстанавливают в тетрагидропроизводное, имеющее четыре фенольных гидроксила. Это лейкопроизводное хорошо растворимое в воде. Хлопчатобумажную ткань пропитывают раствором лейкоформы и выдерживают на воздухе. Лейкоформа окисляется кислородом до исходного красителя. Такой способ крашения гарантирует однородность окраски ткани. Он применяется при крашении индигоидными и другими кубовыми красителями.