
- •Oдноатомные спирты
- •Номенклатура
- •Получение одноатомных спиртов
- •1.Гидратация алкенов
- •2. Гидроксимеркурирование-демеркурирование алкенов
- •3. Гидроборирование алкенов с последующим окислением
- •4. Восстановление альдегидов и кетонов алюмогидридом лития или боргидридом натрия
- •5. Восстановление сложных эфиров и карбоновых кислот до первичных спиртов
- •6. Синтез спиртов из карбонильных соединений с помощью магнийорганических соединений
- •7. Восстановление эпоксидов (оксиранов) с помощью алюмогидрида лития
- •8. Взаимодействие алкилгалогенидов и алкилтозилатов с супероксидом калия
- •III.Свойства одноатомных спиртов
- •1. Спирты как слабые oh-кислоты
- •2. Замещение гидроксильной группы на галоген
- •А. Получение алкилгалогенидов из спирта и галогеноводородов
- •Б. Получение алкилгалогенидов из спиртов и галогенидов фосфора
- •В.Получение алкилхлоридов из спиртов и тионилхлорида
- •Г. Получение алкилгалогенидов из спиртов и квазифосфониевых солей
- •Д. Замещение сульфонатной группы в алкилсульфонатах на галоген
- •3.Дегидратация спиртов
- •4. Получение простых эфиров по Вильямсону
- •5.Окисление спиртов
- •6. Защитные группы для гидроксильной группы
- •Двухатомные спирты
- •I. Получение диолов
- •2. Свойства диолов
- •1.Дегидратация
- •2. Окислительное расщепление 1,2-диолов
- •Простые эфиры номенклатура
- •2.Получение простых эфиров
- •А. Межмолекулярная дегидратация спиртов
- •Б. Алкоксимеркурирование алкенов
- •Синтез простых эфиров по Вильямсону
- •III. Свойства простых эфиров
- •1. Кислотное расщепление простых эфиров
- •2. Радикальные реакции простых эфиров
- •Оксираны (эпоксиды)
- •Получение оксиранов
- •II. Свойства оксиранов
- •Тиолы, сульфиды, сульфоксиды и сульфоны тиолы и сульфиды
- •I. Получение тиолов
- •II. Свойства тиолов
- •1. Фенолы
- •1.1. Введение
- •2. Получение фенолов
- •2.1. Замещение сульфогруппы на гидроксил
- •2.2.Замещение галогена на гидроксил
- •2.3. Замещение диазогруппы на гидроксил
- •2.4. Получение фенола из гидропероксида кумола
- •3. Свойства фенолов
- •3.1. Кислотные свойства фенолов
- •Величины рКа орто-, мета- и пара-замещенных фенолов в воде при 25оС
- •Величины рКа некоторых полизамещенных фенолов и нафтолов
- •3.2. Таутомерия фенолов
- •3.4. Этерификация фенолов
- •3.5. Реакции электрофильного замещения в ароматическом кольце фенола
- •3.5.1. Галогенирование фенолов
- •3.5.2. Нитрование фенолов
- •3.5.3. Сульфирование фенолов
- •3.5.4. Нитрозирование фенолов
- •3.5.5. Алкилирование и ацилирование фенолов по Фриделю-Крафтсу
- •3.5.6. Формилирование фенолов
- •3.5.6А. Реакция Гаттермана
- •3.5.6Б. Реакция Вильсмейера-Хаака
- •3.5.6В. Реакция Реймера-Тимана
- •3.5.7. Конденсация фенолов с альдегидами и кетонами
- •3.5.8. Карбоксилирование феноксид-ионов - реакция Кольбе
- •3.5.9. Азосочетание
- •3.6. Перегруппировка Кляйзена аллилариловых эфиров
- •3.7. Окисление фенолов
- •4. Хиноны
- •4.1. Получение хинонов
- •4.2. Химические свойства хинонов
- •4.2.1.Восстановление хинонов
- •Величины нормальных редокс-потенциалов Ео некоторых хинонов в воде при 25оС
- •4.2.2. Хиноны как дегидрирующие агенты
- •4.2.3. Хиноны как , -непредельные кетоны
- •4.2.4. Хиноны как диенофилы в реакции диенового синтеза
2. Свойства диолов
1.Дегидратация
Дегидратация 1,2-диолов может протекать по трем различным направлениям: 1) дегидратация до диенов; 2) дегидратация, сопровождаемая перегруппировкой - так называемая "пинаколиновая перегруппировка"; 3) образование циклических эфиров и эпоксидов. Все эти реакции катализируются кислотными агентами и поэтому в общем случае все направления конкурируют друг с другом. Тем не менее удается подобрать условия, когда одно из направлений становится преобладающим. Дегидратация дитретичных или дивторичных 1,2-диолов до диенов происходит при кипячении с 48%-ной бромистоводородной кислотой или на окиси алюминия при 450-470oС.
В отличие от этого дегидратация дитретичных, дивторичных и первично-третичных 1,2-диолов, катализируемая серной кислотой, и-толуолсульфокислотой, кислотами Льюиса, сопровождается 1,2-миграцией алкильной или арильной группы или гидрид-иона (пинаколиновая перегруппировка). Продуктами этой перегруппировки являются кетоны или альдегиды.
Некоторые наиболее типичные примеры пинаколиновой перегруппировки диолов приведены ниже.
Наибольшее практическое значение для органического синтеза приобрела перегруппировка дитретичных и дивторичных 1,2-диолов, приводящая к кетонам, которая характеризуется высоким выходом карбонильных соединений.
Используя восстановительную димеризацию циклоалканонов и последующую пинаколиновую перегруппировку, можно достаточно простым способом получить спироциклические соединения, содержащие кетогруппу.
Механизм пинаколиновой перегруппировки очень подробно исследован. В простейшем случае в качестве промежуточной частицы при дегидратации 1,2-диола образуется карбокатион, в котором происходит 1,2-миграция алкильной или арильной групп с образованием протонированной формы карбонильного соединения. Перегруппировка завершается отщеплением протона из оксониевого катиона. Специальными опытами установлено, что конфигурация мигрирующей группы полностью сохраняется в продукте перегруппировки. Это указывает на внутримолекулярный характер 1,2-миграции алкильной группы. Во многих случаях реализуется согласованный процесс без образования карбокатиона в качестве промежуточной частицы. В этом случае отщепление воды происходит из протонированной формы диола с анхимерным содействием мигрирующей группы.
Легко заметить, что такой механизм не требует образования карбокатиона как необходимого условия для 1.2-миграции алкильной или арильной групп.
Для тетраарилзамещенных 1,2-диолов был установлен механизм перегруппировки, в котором в качестве промежуточного продукта образуется эпоксид.
Таким образом, в зависимости от структурных факторов механизм пинаколиновой перегруппировки 1,2-диолов может быть различным. Определен ряд мигрирующей способности групп:
Этиленгликоль и другие 1,2-диолы общей формулы RCH(OH)CH2OH при нагревании с концентрированной серной, 85%-ной фосфорной кислотами или п-толуолсульфокислотой дают 1,4-диоксаны - циклические простые эфиры с двумя атомами кислорода. Циклодегидратация 1,4-диолов и 1,5-диолов в тех же условиях служит наиболее важным способом получения производных тетрагидрофурана и тетрагидропирана, соответственно.
Этот метод не пригоден для получения оксиранов из 1,2-диолов, оксетанов из 1,3-диолов и циклических простых эфиров с числом звеньев цикла более шести из a,v -диолов.