
- •37. Генератор с кварцевой стабилизацией частоты.
- •36. Одновибраторы
- •35. Генераторы прямоугольных колебаний.
- •33. Генераторы гармонических сигналов.
- •32. Обратноходовые импульсные стабилизаторы напряжения.
- •31. Импульсные стабилизаторы напряжения.
- •30. Последовательные компенсационные стабилизаторы напряжения.
- •29. Стабилизаторы напряжения. Разновидности. Параметры.
- •28. Источники вторичного электропитания рэа.
- •27. Дифференциальные упт.
- •26.Усилители мощности с комплементарными транзисторами.
- •25.Усилители мощности. Разновидности усилители мощности.
- •24. Обратные связи в усилителях.
- •23. Усилители электрических сигналов. Разновидности, параметры. Характеристики.
- •22. Компараторы напряжения.
- •21. Применение оу.
- •20. Операционные усилители. Параметры, характеристики.
- •19. Полевые транзисторы. Принцип действия. Разновидности, параметры, характеристики.
- •18. Эмиттерный повторитель.
- •17. Режимы усиления транзисторов в усилительных каскадах.
- •16. Оос в усилителях на транзисторах.
- •15. Методы задания точки покоя транзисторного каскада с общим эмиттером.
- •14. Усилитель на бт с общим эмиттером.
- •13. Параметры и характеристики бт. Режимы работы бт.
- •12. Биполярные транзисторы. Принцип работы. 3 схемы включения.
- •11.Тирсторы. Разновидности, параметры, хар-ки, применение.
- •10. Оптоэлектронные приборы. Разновидности, параметры характеристики, применение.
- •9. Стабилитроны. Параметры, характеристики, применение.
- •8. Выпрямительные диоды. Выпрямление переменных сигналов с помощью диодов.
- •7. Полупроводниковые диоды. Параметры, характеристики, разновидности.
- •6. Пассивные полосовые и режекторные фильтры.
- •5. Пассивные фильтры высоких частот.
- •4. Пассивные фильтры низких частот.
- •3. Электрические сигналы. Разновидности, параметры, характеристики.
- •2. Основные понятия линейных электрических цепей. Аттенюаторы. Идеальные и реальные источники напряжения. Источники тока.
- •1.Электроника и микросхемотехника. Основные направления. Электронные устройства в системах автоматики.
33. Генераторы гармонических сигналов.
Генератором электрических колебаний называют устройство, преобразующее энергию источника питания постоянного напряжения в энергию переменных колебаний требуемой формы. В зависимости от формы выходного напряжения различают: генераторы гармонических колебаний и генераторы негармонических колебаний (импульсные генераторы).
Любой генератор, независимо от формы выходных колебаний, может работать в одном из двух режимов: режим автоколебаний и режим внешнего запуска (ждущий).
Условия возникновения колебаний. Положительная обратная связь является главной особенностью всех генераторов. Обратимся к структурной схеме генератора с положительной обратной связью (рис.16.1). Эта схема аналогична соответствующей структурной схеме усилителя с обратной связью. При рассмотрении обратной связи в усилителях было определено, что коэффициент усиления любого усилителя с обратной связью определяется выражением:
ОС
=
/
(1 ±
),
где
–
коэффициент усиления без обратной
связи, а
– величина, показывающая какая часть
выходного сигнала возвращается на вход,
«+» в знаменателе – при ООС, «–» – ПОС.
В случае ПОС может выполняться условие
1 –
=
0 или
=
1, которое дает бесконечное значение
для
ос.
Это означает, что усилитель создает
выходной сигнал в отсутствие входного,
что и является условием генерации.
Обычно
и
зависят
от частоты и являются комплексными
числами. В этом случае условие генерации
можно записать в виде:
Кγ = 1, (16.2) φ + ψ = 2πn, (16.3)
где K и φ, γ и ψ – соответственно модуль и фаза коэффициента передачи усилителя и цепи обратной связи, n = 0, 1, 2, 3 …
Выражения 16.2 и 16.3 называются соответственно условиями баланса амплитуд и баланса фаз.
Рис.16.1. Структурная схема генератора
Если условие самовозбуждения (генерации) выполняется только для одной частоты, то на выходе генератора поддерживается синусоидальное напряжение этой частоты (именно это характерно для генераторов гармонических колебаний). Если это условие выполняется для нескольких частот, то выходное напряжение оказывается несинусоидальным, в нем имеется несколько гармоник. Из изложенного следует, что генератор гармонических колебаний должен содержать по крайней мере одну частотно-избирательную цепь, которая бы обеспечивала выполнение условия самовозбуждения на заданной частоте. В зависимости от вида частотно-избирательной цепи, использующейся в генераторе, генератор относят к тому или иному типу. По виду используемой цепи разделяют LC-, RC- и кварцевые генераторы, в которых используются кварцевые резонаторы. В некоторых схемах совместно используются кварцевые резонаторы и LC-контуры.
32. Обратноходовые импульсные стабилизаторы напряжения.
Существуют импульсные стабилизаторы напряжения, в которых в качестве узла накопления энергии используется импульсный трансформатор. Достоинство таких стабилизаторов, а точнее преобразователей напряжения (они могут быть как повышающими, так понижающими и инвертирующими) – гальваническая развязка между источником входного напряжения и нагрузкой, и возможность получения нескольких выходных напряжений. Принцип работы такого преобразователя, получившего название обратноходового, рассмотрим по упрощенной структурной схеме, изображенной на рис.17.12.
Рис. 17.12. Структурная схема обратноходового импульсного
стабилизатора напряжения
Обмотки трансформатора фазированы таким образом, что когда транзистор VT находится в состоянии насыщения и через первичную коллекторную обмотку течет линейно нарастающий ток, полярность напряжения на диоде обратная, и ток через вторичную обмотку не идет. Происходит накопление энергии в трансформаторе. Когда VT переходит в состояние отсечки, полярность напряжения на вторичной обмотке изменяется, открывается диод, и через нагрузку начинает течь ток, который поддерживается зарядом конденсатора С. Нетрудно заметить, что работа обратноходового преобразователя аналогична работе инвертирующего стабилизатора (рис.17.10, в). Импульсный трансформатор может иметь несколько вторичных обмоток с соответствующим образом включенными диодами, и таким образом становится возможным получение двух и более (в том числе разнополярных) выходных напряжений.
Определенным недостатком импульсных стабилизаторов по сравнению с линейными является наличие у них переменной составляющей тока нагрузки, поэтому импульсные ИСН не применяют в аналоговых устройствах со слабыми сигналами, или же используют совместно с линейными стабилизаторами.