
- •37. Генератор с кварцевой стабилизацией частоты.
- •36. Одновибраторы
- •35. Генераторы прямоугольных колебаний.
- •33. Генераторы гармонических сигналов.
- •32. Обратноходовые импульсные стабилизаторы напряжения.
- •31. Импульсные стабилизаторы напряжения.
- •30. Последовательные компенсационные стабилизаторы напряжения.
- •29. Стабилизаторы напряжения. Разновидности. Параметры.
- •28. Источники вторичного электропитания рэа.
- •27. Дифференциальные упт.
- •26.Усилители мощности с комплементарными транзисторами.
- •25.Усилители мощности. Разновидности усилители мощности.
- •24. Обратные связи в усилителях.
- •23. Усилители электрических сигналов. Разновидности, параметры. Характеристики.
- •22. Компараторы напряжения.
- •21. Применение оу.
- •20. Операционные усилители. Параметры, характеристики.
- •19. Полевые транзисторы. Принцип действия. Разновидности, параметры, характеристики.
- •18. Эмиттерный повторитель.
- •17. Режимы усиления транзисторов в усилительных каскадах.
- •16. Оос в усилителях на транзисторах.
- •15. Методы задания точки покоя транзисторного каскада с общим эмиттером.
- •14. Усилитель на бт с общим эмиттером.
- •13. Параметры и характеристики бт. Режимы работы бт.
- •12. Биполярные транзисторы. Принцип работы. 3 схемы включения.
- •11.Тирсторы. Разновидности, параметры, хар-ки, применение.
- •10. Оптоэлектронные приборы. Разновидности, параметры характеристики, применение.
- •9. Стабилитроны. Параметры, характеристики, применение.
- •8. Выпрямительные диоды. Выпрямление переменных сигналов с помощью диодов.
- •7. Полупроводниковые диоды. Параметры, характеристики, разновидности.
- •6. Пассивные полосовые и режекторные фильтры.
- •5. Пассивные фильтры высоких частот.
- •4. Пассивные фильтры низких частот.
- •3. Электрические сигналы. Разновидности, параметры, характеристики.
- •2. Основные понятия линейных электрических цепей. Аттенюаторы. Идеальные и реальные источники напряжения. Источники тока.
- •1.Электроника и микросхемотехника. Основные направления. Электронные устройства в системах автоматики.
17. Режимы усиления транзисторов в усилительных каскадах.
В зависимости от значения и знака напряжения смещения UБ0 и напряжения сигнала UВХ в схеме транзисторного каскада, приведенного на рис.11.5, возможно несколько принципиально различных режимов его работы, называемых классами усиления. Различают следующие режимы работы: A, B, C, D, E; промежуточные режимы AB, AD, BD.
Режимы работы в зависимости от начального положения рабочей точки показаны на рис. 11.9.
Рис.11.9. Связь режимов усиления и точки покоя транзистора
Режим А – это режим работы транзистора, при котором ток в выходной цепи IK протекает в течение всего периода входного сигнала (рис.11.10). Положение рабочей точки выбирают так, чтобы она находилась в пределах отрезка АВ нагрузочной прямой (рис.11.6), только в линейном (активном) режиме работы транзистора. Преимуществом режима А является то, что в нем возникают малые нелинейные искажения. Однако КПД каскада η = P~/P0 низкий – менее 0,5. Режим А используют в каскадах предварительного усиления, а также в маломощных выходных каскадах.
Рис.11.10. а – входной сигнал усилителя; б – режим А; в – режим В и АВ; г – режим С
Режим АВ. Чтобы исключить переходные искажения выходного сигнала, применяют режим класса АВ, когда на базу транзистора подается небольшое напряжение смещения UБ0, при котором рабочая точка занимает начальное положение в нелинейной области входных характеристик, но через транзисторы в отсутствие входного сигнала протекает небольшой ток IБ0 (рис.11.9). При этом КПД схемы практически не изменяется, но переходные искажения уменьшаются в несколько раз (рис.11.11, б).
Рис.11.11. Диаграммы работа транзистора: а) – класс В; б) – класс АВ. Режим D. В режиме D транзистор работает как электронный ключ, т.е. он открыт или заперт. В закрытом состоянии через транзистор протекает незначительный ток, а падение напряжения на нем примерно равно напряжению источника питания. В открытом состоянии падение напряжения на транзисторе мало, а ток велик. Поэтому и в закрытом, и в открытом состоянии потери на транзисторе малы, и КПД каскада в режиме класса D приближается к 100%.Гармонические сигналы, прежде чем подаваться на вход усилительного каскада класса D, модулируются. После усиления импульсов, промодулированных по ширине, осуществляется их обратное преобразование (демодуляция) в сигнал первоначальной формы. В усилителях класса D используются два режима: AD (рис.11.12, а) и BD (рис.11.12, б). Если для осуществления режима AD применяются сравнительно простые электрические схемы, как и для режима А, то режим BD реализуется с помощью сложных двухтактных схем с двойным управлением транзисторами. Режим Е, как и режим D, позволяет получать высокий КПД (более 90%) в оконечном каскаде усилителя мощности при изменении уровня усиливаемого сигнала в широких пределах. Сущность режима Е заключается в том, что точка покоя транзистора не зафиксирована, а изменяет свое положение в зависимости от уровня входного сигнала. Это достигается за счет регулируемого источника питания, который изменяет свое напряжение в соответствии со входным сигналом. Транзистор меняет свое положение на ВАХ таким образом, что падение напряжения на транзисторе получается минимальным для активного режима, что обеспечивает значительное уменьшение рассеиваемой мощности на транзисторе.
Рис.11.12. Диаграммы работы транзисторов: а – режим AD; б – режим BD