
- •4. Классификации аминокислот.
- •5) Физико-химические свойства белка. Обратимое и необратимое осаждение белка.
- •6) Этапы денатурации и ренатурации белков.
- •31. Полиферментные комплексы. Аллостерические ферменты, их структура и роль.
- •35 Теория сопряжения окисления и фосфорилирования питера митчелла.
- •36 Регуляция гликолиза
- •38. Окислительное декарбоксилирование пирувата, механизм и биологическая роль.
- •39. Цикл трикарбоновых кислот, химизм, энергетический эффект, внутриклеточная
- •40. Распад гликогена (гликогенолиз). Химизм, энергетический эффект окисления глюкозы, связь с гликолизом
- •42. Липиды. Их классификация и функции
- •43.Основные липиды живого организма, их строение.
- •44. Холестерин и его производные: строение, свойства и функции.
- •45. Жирные кислоты: строение, свойства и функции.
- •46. Простагландины, их биологическая роль.
- •48.Структура ц-амф, биологическая роль. Регуляция содержания цАмф в клетках.
- •50.Строение, биологическая роль, механизм действия тиреоидных гормонов.
- •51.Инсулин, строение, биологическая роль, механизм действия.
- •Строение
- •Действие инсулина
- •52.Гормоны мозгового слоя надпочечников, строение, биологическая роль, механизм действия (на примере адреналина).
- •59. Витаминоподобные вещества: строение, свойства и функции в организме.
- •60. Антивитамины: строение, свойства и механизм действия.
35 Теория сопряжения окисления и фосфорилирования питера митчелла.
И
звестно,
что через мембрану митохондрии могут
свободно проникать только небольшие
незаряженные молекулы, а также гидрофобные
молекулы. Энергия, которая выделяется
при переносе электронов по цепи МтО,
приводит к переносу протонов (Н+)
из матрикса митохондрии в межмембранное
пространство. Поэтому на внутренней
мембране митохондрий образуется градиент
концентраций протонов: в межмембранном
пространстве Н+
становится
много, а в матриксе остается мало.
Образуется разность потенциалов 0.14V -
наружная часть мембраны заряжена
положительно, а внутренняя - отрицательно.
Накопившиеся в межмембранном пространстве
Н+
стремятся выйти обратно в матрикс по
градиенту их концентраций, но
митохондриальная мембрана для них
непроницаема. Единственный обратный
путь в матрикс для протонов - через
протонный канал фермента АТФ-синтетазы,
которая встроена (built-in) во внутреннюю
мембрану митохондрий. При движении
протонов по этому каналу в матрикс их
энергия используется АТФ-синтазой для
синтеза АТФ. Синтезируется АТФ в матриксе
митохондрий.
После синтеза АТФ переносится в цитоплазму путем облегчённой диффузии по градиенту концентраций, поскольку основные процессы, в которых АТФ потребляется, протекают в цитоплазме.
Как происходит транспорт АТФ из митохондрий в цитоплазму?
Для этого используется специфический для АТФ транспортный белок - АТФ/АДФ-транслоказа. Это интегральный белок, локализован во внутренней мембране митохондрий.
Для образования АТФ в матрикс всё время должен поступать неорганический фосфат (Ф). Для этого во внутренней мембране митохондрий есть транспортная система, которая обеспечивает перенос фосфата в матрикс сопряженно с переносом Н+. Это белок-переносчик, который имеет 2 центра связывания: для Ф и Н+. Ф и Н+ вместе переносятся из межмембранного пространства в матрикс.
Известны некоторые вещества, которые способны разобщать процессы окисления и фосфорилирования, приводя тем самым к уменьшению коэффициента р/о. К ним относятся йодсодержащие гормоны щитовидной железы (тироксин, трийодтиронин), а также некоторые ксенобиотики (например, 2,4-динитрофенол). Такие вещества известны под общим названием «РАЗОБЩАЮЩИЕ ЯДЫ». Как действуют вещества-разобщители окисления и фосфорилирования? Они могут образовывать собственные протонные каналы во внутренней мембране митохондрий. Поэтому часть протонов, вместо того, чтобы идти обратно в матрикс по протонному каналу АТФ-синтетазы, уходит туда по каналам веществ-разобщителей. В результате АТФ образуется меньше, и часть энергии выделяется в виде тепла.
36 Регуляция гликолиза
Различают местную и общую регуляцию.
Местная регуляция осуществляется путём изменения активности ферментов под действием различных метаболитов внутри клетки.
Регуляция гликолиза в целом, сразу для всего организма, происходит под действием гормонов, которые, влияя через молекулы вторичных посредников, изменяют внутриклеточный метаболизм.
Важное значение в стимуляции гликолиза принадлежит инсулину. Глюкагон и адреналин являются наиболее значимыми гормональными ингибиторами гликолиза.
Инсулин стимулирует гликолиз через:
активацию гексокиназной реакции;
стимуляцию фосфофруктокиназы;
стимуляцию пируваткиназы.
Также на гликолиз влияют и другие гормоны. Например, соматотропин ингибирует ферменты гликолиза, а тиреоидные гормоны являются стимуляторами.
Регуляция гликолиза осуществляется через несколько ключевых этапов. Реакции, катализируемые гексокиназой (1), фосфофруктокиназой (3) и пируваткиназой (10) отличаются существенным уменьшением свободной энергии и являются практически необратимыми, что позволяет им быть эффективными точками регуляции гликолиза.
Значение
Гликолиз — катаболический путь исключительной важности. Он обеспечивает энергией клеточные реакции, в том числе и синтез белка. Промежуточные продукты гликолиза используются при синтезе жиров. Пируват также может быть использован для синтеза аланина, аспартата и других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.