Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биохимия всё,что есть.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.28 Mб
Скачать

31. Полиферментные комплексы. Аллостерические ферменты, их структура и роль.

Полиферментные комплексы. В состав таких комплексов, образованных за счет нековалентных взаимодействий, входит несколько индивидуальных ферментов; обычно эти ферменты функционально взаимосвязаны и катализируют серию последовательных реакций, например, пируватдегидрогеназный комплекс E.coli включает три фермента: пируватдегидроге- назный компонент, дигидролипоилтрансацетилазу и дигидролипоилдегидрогеназу.

Аллостерические ферменты являются полимерными белками, действие которых «по определению» связано с изменением формы (alios — иной, другой; stereos — форма). Аллостерические ферменты обладают четвертичной структурой (состоят из нескольких полипептидных цепей) и помимо активного центра имеют обособленные "аллостерические" центры (один или несколько) на поверхности своих молекул. К этим центрам присоединяются специфические регуляторы, так называемые эффекторы, изменяющие активность фермента, а следовательно, и всего метаболического процесса в целом. Аллостерические ферменты играют важную роль в метаболизме, так как они чрезвычайно быстро реагируют на малейшие изменения внутреннего состояния клетки.

32. Изоферменты, множественные молекулярные формы ферментов, их свойства,регуляторная функция.

Изоферменты-это ферменты, катализирующие идентичные реакции, но отличающиеся друг от друга строением и каталитическими свойствами. К изоферментам относят только те формы ферментов, появление которых связано с генетически детерминированными различиями в первичной структуре пептидной цепи.

Множественные формы ферментов можно разделить на две категории:

Изоферменты

Собственно множественные формы (истинные)

Собственно множественные формы (истинные) — это ферменты, синтез которых кодируется одним и тем же аллелем одного и того же гена, у них одинаковая первичная структура и свойства, но после синтеза на рибосомах они подвергаются модификации и становятся разными, хотя и катализируют одну и ту же реакцию.

Свойства ферментов:

Ферменты характеризуются следующими основными свойствами.  . Высокая каталитическая активность (углекислый газ из крови связывается с гемоглобином в карбогемоглобин со скоростью 10 молекул в секунду, а при ферменте карбоангидраза в 10 раз больше).

2. Специфичность (избирательность) действия (один фермент катализирует одну реакцию).

3. Регулируемость активности ферментов (внутренняя среда организма из-за действия ферментов всегда постоянна).

Факторы влияющие на активность ферментов.

1. Концентрация фермента и субстрата (чем выше концентрация исходных веществ, тем выше скорость реакции).

2. Активная реакция среды (рН) (большинство ферментов проявляют максимальную активность при значении рН=7 (нейтральная). Некоторые активны только в кислой среде (пепсин рН=2), некоторые только в щелочной (липаза рН=9). При физических нагрузках в мышцах накапливается молочная кислота, способная закислять среду и снижать активность многих ферментов).

3. Температура (Различные клеточные ферменты работают в своем диапазоне температур, где они проявляют наибольшую активность (средние температуры 37-40 С) При низких температурах активность ферментов замедляется, при высоких фермент(белок) разрушается (денатурация белка). При замораживании фермент сохраняет свою структуру и затем при размораживании восстанавливает свои свойства).

4. Активаторы и ингибиторы (ионы металлов, низкомолекулярные вещества) активаторыповышают активность фермента (АТФ-аза миозина мышц активируется ионами Са ), ингибиторыснижают активность фермента, т.к. занимают место субстрата (конкурентные ингибиторы), или соединяются с неактивной частью и тем самым меняют химическую природу фермента (катализ нарушается) (неконкурентные ингибиторы – ионы тяжелых металлов – свинец, медь, ртуть, мышьяк и многие яды).

Регуляторная функция:

Поскольку практически все реакции в клетке катализируются ферментами, регуляция метаболизма сводится к регуляции интенсивности ферментативных реакций. Скорость последних может регулироваться двумя основными способами: путем изменения количества ферментов и/или изменения их активности, т. с. степени использования их каталитического потенциала. Факторы, регулирующие активность ферментов, разнообразны по своей природе . Физические факторы (температура, давление, свет, магнитное поле, электрические импульсы оказывают менее специфическое действие, чем химические. 

33. Классификация ферментов. Классы ферментов, их характеристика.

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC — Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название EС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:  • EC 1: Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа  • EC 2: Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.  • EC 3: Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза  • EC 4: Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.  • EC 5: Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.  • EC 6: Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза  Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию — присоединение по двойным связям. 

34. . Современная теория биологического окисления, сопряженного с синтезом АТФ.

Окисление биологическое-совокупность реакций окисления, протекающих во всех живых клетках. Основная функция О. б. — обеспечение организма энергией в доступной для использования форме. Реакции О. б. в клетках катализируют ферменты, объединяемые в класс оксидоредуктаз. Изучение окисления в организме было начато в 18 в. А.Лавуазье

Основной путь использования энергии, освобождающейся при О. б., — накопление её в молекулах аденозинтрифосфорной кислоты (АТФ) и др. макроэргических соединений  О. б., сопровождающееся синтезом АТФ из аденозиндифосфорной кислоты (АДФ) и неорганического фосфата, происходит приГликолизе, окислении α-кетоглутаровой кислоты и при переносе ВЭ в цепи окислительных (дыхательных) ферментов, обычно называют окислительным фосфорилированием

Согласно СОВРЕМЕННОЙ ТЕОРИИ БИООКИСЛЕНИЯ в нашем организме окисление

может происходить двумя способами:

1. Путем отнятия водорода от окисляемого субстрата: сюда относятся

МИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ и ВНЕМИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ ОКСИДАЗНОГО

ТИПА.

2. Путем присоединения кислорода к окисляемому субстрату - так

происходит внемитохондриальное ОКИСЛЕНИЕ ОКСИГЕНАЗНОГО ТИПА (старое

название - МИКРОСОМАЛЬНОЕ окисление).

МИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ (МтО).

Система митохондриального окисления - мультиферментная система,

постепенно транспортирующая протоны и электроны на кислород с

образованием молекулы воды. Все ферменты митохондриального окисления встроены во внутреннюю

мембрану митохондрий. Только первый переносчик протонов и электронов -

никотинамидная дегидрогеназа расположена в матриксе митохондрии. Этот

фермент отнимает водород от субстрата и передает его следующему

переносчику. Полный комплекс таких ферментов образует "дыхательный

ансамбль" («дыхательную цепь»), в пределах которого атомы водорода

отнимаются от субстрата, затем передаются последовательно от одного

переносчика к другому, и, наконец, передаются на кислород воздуха с

образованием воды.

Понятие о гормонах, их классификация, свойства и механизм действия.

Гормоны - это то, что делает нас особенным и непохожим на остальных. Они предопределяют наши физические и психические особенности. Вырастем мы высоким или не очень, полным или худым. Наши гормоны влияют на все аспекты нашей жизни - с момента зачатия и до самой смерти. Они будут влиять на наш рост, половое развитие, формирование наших желаний, на обмен веществ в организме, на крепость мышц, на остроту ума, поведение, даже на наш сон.

Гормоны – химические соединения, обладающие высокой биологической активностью и в малых количествах значительным физиологическим эффектом. Гормоны транспортируются кровью к органам и тканям, при этом лишь небольшая их часть циркулирует в свободном активном виде. Основная часть находится в крови в связанной форме в виде обратимых комплексов с белками плазмы крови и форменными элементами. Эти две формы находятся в равновесии друг с другом, причем равновесие в состоянии покоя значительно сдвинуто в сторону обратимых комплексов. Их концентрация составляет 80 %, а иногда и более от суммарной концентрации данного гормона в крови.

Гормоны следует классифицировать по трем основным признакам.

1. По химической природе

2. По эффекту (знаку действия) – возбуждающие и тормозящие.

3. По месту действия на органы – мишени или другие железы: 1) эффекторные; 2) тропные.

В настоящее время описано и выделено более полутора сотен гормонов из разных многоклеточных организмов.

По химической природе гормоны разделены на три группы:

1) стероиды;

2) полипептиды и белки с наличием углеводного компонента и без него;

3) аминокислоты и их производные.

Для всех гормонов характерен относительно небольшой период полужизни – около 30 мин. Гормоны должны постоянно синтезироваться и секретироваться, действовать быстро и с большой скоростью инактивироваться. Только в этом случае они могут эффективно работать в качестве регуляторов.

Физиологическая роль желез внутренней секреции связана с их влиянием на механизмы регуляции и интеграции, адаптации, поддержания постоянства внутренней среды организма.

Свойства гормонов, механизм их действия

Выделяют три основных свойства гормонов:

1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования);

2) строгую специфичность действия (ответные реакции на действие гормона строго специфичны и не могут быть вызваны другими биологически активными агентами);

3) высокую биологическая активность (гормоны вырабатываются железами в малых количествах, эффективны в очень небольших концентрациях, небольшая часть гормонов циркулирует в крови в свободном активном состоянии).

Действие гормона на функции организма осуществляется двумя основными механизмами: через нервную систему и гуморально, непосредственно на органы и ткани.

Гормоны функционируют как химические посредники, переносящие информацию или сигнал в определенное место – клетку-мишень, которая имеет высокоспециализированный белковый рецептор, с которым связывается гормон.

По механизму воздействия клеток с гормонами гормоны делятся на два типа.

Первый тип (стероиды, тиреоидные гормоны) – гормоны относительно легко проникают внутрь клетки через плазматические мембраны и не требуют действия посредника (медиатора).

Второй тип – плохо проникают внутрь клетки, действуют с ее поверхности, требуют присутствия медиатора, их характерная особенность – быстровозникающие ответы.

В соответствии с двумя типами гормонов выделяют и два типа гормональной рецепции: внутриклеточный (рецепторный аппарат локализован внутри клетки), мембранный (контактный) – на ее наружной поверхности. Клеточные рецепторы – особые участки мембраны клетки, которые образуют с гормоном специфические комплексы. Рецепторы имеют определенные свойства, такие как:

1) высокое сродство к определенному гормону;

2) избирательность;

3) ограниченная емкость к гормону;

4) специфичность локализации в ткани.

Механизм действия гормонов с клеткой-мишенью происходит следующие этапы:

1) образование комплекса «гормон—рецептор» на поверхности мембраны;

2) активацию мембранной аденилциклазы;

3) образование цАМФ из АТФ у внутренней поверхности мембраны;

4) образование комплекса «цАМФ—рецептор»;

5) активацию каталитической протеинкиназы с диссоциацией фермента на отдельные единицы, что ведет к фосфорилированию белков, стимуляции процессов синтеза белка, РНК в ядре, распада гликогена;

6) инактивацию гормона, цАМФ и рецептора.

Действие гормона может осуществляться и более сложным путем при участии нервной системы. Гормоны воздействуют на интерорецепторы, которые обладают специфической чувствительностью (хеморецепторы стенок кровеносных сосудов). Это начало рефлекторной реакции, которая изменяет функциональное состояние нервных центров. Рефлекторные дуги замыкаются в различных отделах центральной нервной системы.

Выделяют четыре типа воздействия гормонов на организм:

1) метаболическое воздействие – влияние на обмен веществ;

2) морфогенетическое воздействие – стимуляция образования, дифференциации, роста и метаморфозы;

3) пусковое воздействие – влияние на деятельность эффекторов;

4) корригирующее воздействие – изменение интенсивности деятельности органов или всего организма.