
- •4. Классификации аминокислот.
- •5) Физико-химические свойства белка. Обратимое и необратимое осаждение белка.
- •6) Этапы денатурации и ренатурации белков.
- •31. Полиферментные комплексы. Аллостерические ферменты, их структура и роль.
- •35 Теория сопряжения окисления и фосфорилирования питера митчелла.
- •36 Регуляция гликолиза
- •38. Окислительное декарбоксилирование пирувата, механизм и биологическая роль.
- •39. Цикл трикарбоновых кислот, химизм, энергетический эффект, внутриклеточная
- •40. Распад гликогена (гликогенолиз). Химизм, энергетический эффект окисления глюкозы, связь с гликолизом
- •42. Липиды. Их классификация и функции
- •43.Основные липиды живого организма, их строение.
- •44. Холестерин и его производные: строение, свойства и функции.
- •45. Жирные кислоты: строение, свойства и функции.
- •46. Простагландины, их биологическая роль.
- •48.Структура ц-амф, биологическая роль. Регуляция содержания цАмф в клетках.
- •50.Строение, биологическая роль, механизм действия тиреоидных гормонов.
- •51.Инсулин, строение, биологическая роль, механизм действия.
- •Строение
- •Действие инсулина
- •52.Гормоны мозгового слоя надпочечников, строение, биологическая роль, механизм действия (на примере адреналина).
- •59. Витаминоподобные вещества: строение, свойства и функции в организме.
- •60. Антивитамины: строение, свойства и механизм действия.
60. Антивитамины: строение, свойства и механизм действия.
Антивитамины, вещества, затрудняющие использование витаминов клеткой путем их разрушения, связывания в неактивные формы, замещения соединениями, близкими по структуре, но не обладающими их свойствами.
Механизм действия и применение антивитаминов: •(витамин) В1 – (антивитамин) гидрокситиамин – (механизм действия) замещение коферментов – (область применения) экспериментальные гиповитаминозы; •В2 – дихлоррибофлавин – замещение коферментов - экспериментальные гиповитаминозы; •В3 – изониазид - замещение коферментов – туберкулостатик; •В5 – гомопантотеновая кислота - замещение коферментов - экспериментальные гиповитаминозы; •В6 – дезоксипиридоксин - замещение коферментов - экспериментальные гиповитаминозы; •Вс* (фолиевая кислота) – птеридин - замещение коферментов – лечение лейкозов; •ПАБК (пара-аминобензойная кислота) – сульфаниламиды и их производные – включаются вместо ПАБК в молекулу фолацина при синтезе у микроорганизмов, блокируют фолатзависимые реакции – лечение инфекционных заболеваний, вызванных ПАБК–зависимыми микроорганизмами.
Антивитамины также превращаются в коферменты, только ложные. Они подменяют собой истинные коферменты витаминов, но не могут играть их роль. Специфические белки не замечают подмены и пытаются осуществлять привычные функции. Но это уже невозможно, процессы обмена веществ нарушаются, поскольку не могут происходить без их катализатора – витаминов. Более того, ложный кофермент начинает сам участвовать в процессах, играя свою собственную биохимическую роль.
А. Водорастворимые
Витамин В1 (тиамин);
Витамин В2 (рибофлавин);
Витамин РР (никотиновая кислота, никотинамид, витамин В3)
Пантотеновая кислота (витамин В5);
Витамин В6 (пиридоксин);
Биотин (витамин Н);
Фолиевая кислота (витамин Вс, В9);
Витамин В12 (кобаламин);
Витамин С (аскорбиновая кислота);
Витамин Р (биофлавоноиды).
Б. Жирорастворимые
Витамин А (ретинол);
Витамин D (холекальциферол);
Витамин Е (токоферол);
Витамин К (филлохинон).
Водорастворимые витамины при их избыточном поступлении в организм, будучи хорошо растворимыми в воде, быстро выводятся из организма.
Жирорастворимые витамины хорошо растворимы в жирах и легко накапливаются в организме при их избыточном поступлении с пищей. Их накопление в организме может вызвать расстройство обиена веществ, называемое гипервитаминозом, и даже гибель организма.