Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
фізика шпора.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
3.15 Mб
Скачать

§6.4. Частинка в одновимірній прямокутній потенціальній ямі (ящику). Проходження частинки через потенціальний бар’єр

Усякий зв’язаний стан частинки (електрон в атомі, вільний електрон в металі, нуклон в ядрі тощо), тобто стан з від’ємною потенціальною енергією, можна описати поняттям потенціальної ями.

Розглянемо найпростіший випадок, коли частинка масою m перебуває в одновимірній прямокутній нескінченно глибокій потенціальній ямі шириною l .Оскільки початок відліку потенціальної енергії можна вибирати довільно, то задачу про “яму” замінимо задачею про “ящик”, на дні якого потенціальна енергія дорівнює нулю, а стінки якого нескінченно високі (мал.6.3). Оператор Гамільтона (6.18) для цього випадку має вигляд

Мал.6.3

, (6.21)

де

Всередині ящика рівняння Шрьодінгера запишеться як

. (6.22)

Розв’язок цього рівняння, з врахуванням стандартних вимог, зокрема, , має вигляд

, (6.23)

де n=1,2,3,… – квантове число стану частинки. Енергія частинки в різних квантових станах

, (6.24)

тобто приймає не довільні, а дискретні значення Е1, Е2, Е3, …, зображені на мал.6.3 відповідними енергетичними рівнями. Густина імовірності залежить від координати частинки, при цьому по різному в кожному квантовому стані.

Відстань між сусідніми енергетичними рівнями

. (6.25)

Зокрема, для електрона в ямі шириною l , яка співмірна з розміром атома, отримаємо В цей же час для макрооб’єктів, коли m i l – дуже великі, відстань між рівнями стає зникаюче малою, і тому квантуванням енергії можна знехтувати. Задача про частинку в потенціальній ямі скінченної глибини має дещо складніший розв’язок, але висновок про квантування енергії залишається в силі і в цьому випадку.

С

Мал.6.4

порідненою до описаної є задача про проходження частинки через потенціальний бар’єр шириною l і висотою U0 (мал.6.4). Якщо частинка класична, то вона пролітає над бар’єром, коли Е>U0, і відбивається від нього, коли Е<U0, бо проникнення під бар’єр означало б, що її кінетична енергія від’ємна.

Для квантовомеханічної мікро-частинки розв’язок рівняння Шрьодінгера дає, що хвильові функції в усіх трьох областях ( відмінні від нуля, тобто мікрочастинка проникає під бар’єр і за бар’єр. Це явище називається тунелюванням. Від’ємні значення кінетичної енергії в області ІІ не можуть турбувати, бо в квантовій механіці, в силу дії співвідношення Гайзенберга (§ 6.2), кінетична енергія , як і потенціальна енергія U(x), не є точно визначеними. Прозорість бар’єру тим більша, чим менша його ширина і висота, а також, чим менша маса частинки, тобто ефект тунелювання помітний лише в мікросвіті.

§ 6.5. Квантовий лінійний гармонічний осцилятор

Мал. 6.5

Лінійний гармонічний осцилятор – це матеріальна точка, яка здійснює рух вздовж осі х під дією квазіпружної сили . Потенціальна енергія осцилятора (мал.6.5):

, (6.26)

де m – маса осцилятора, – його власна циклічна частота, х – зміщення від положення рівноваги. Підставляючи (6.26) в рівняння Шрьодінгера (6.20), отримаємо

. (6.27)

Розв’язок цього рівняння, виражений через поліноми Чебишева-Ерміта, задовільняє стандартні вимоги до хвильових функцій лише тоді, коли енергія осцилятора квантується за законом

, (6.28)

де =0,1,2,… – коливальне квантове число.

Відмітимо, що найменша енергія квантового осцилятора при =0, так звана нульова енергія, на відміну від класичного осцилятора не дорівнює нулю. Наявність нульових коливань підтверджується експериментально фактом розсіяння світла кристалами при дуже низьких температурах.

Перебуваючи в певному квантовому стані, осцилятор не поглинає і не випромінює енергії. Випромінювання (поглинання) енергії відбувається при переході осцилятора між квантовими станами, при цьому дозволяються (правила відбору) переходи лише між сусідніми енергетичними рівнями (мал.6.5), тобто . Енергія випромінюваного (поглинутого) кванту , що підтверджує квантовий постулат Планка.