Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KOLLOKVIUM_Obmen_nukleotidov.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
368.13 Кб
Скачать

КОЛЛОКВИУМ

1.Понятие о нуклеопротеидах, их превращения в желудочно-кишечном тракте. Строение, биологическая роль, особенности обмена мононуклеотидов в организме человека.

Нуклеопротеиды – это сложные белки, небелковой частью которых являются нуклеиновые кислоты

Белковую часть составляют гистоны специализированные основные белки

Нуклеиновые кислоты - гетерополимеры, мономерами которых являются мононуклеотиды

Мононуклеотид состоит из азотистого основания, рибозы у РНК (или дезоксирибоза у ДНК) - вместе они составляют нуклеозид, и остатка фосфорной кислоты

В составе нуклеиновых кислот мононуклеотиды связаны 3’,5’-диэфирными связями между рибозами соседних мононуклеотидов через остаток фосфорной кислоты

Биологическая роль мононуклеотидов

  • Структурная

Из мононуклеотидов построены:

/нуклеиновые кислоты/

/некоторые коферменты/

/простетические группы ферментов/

  • Энергетическая

/Мононуклеотиды содержат макроэргические связи - являются аккумуляторами энергии

- АТФ - это универсальный аккумулятор энергии./

- Сигнальная

/Мононуклеотиды - аллостерические эффекторы многих ключевых ферментов

цАМФ и цГМФ являются посредниками в передаче гормонального сигнала/

2.Биосинтез пуриновых нуклеотидов. Источники атомов пуринового кольца, реакции синтеза, роль витаминов в9 и в12.

Формировании пуринового кольца принимают участие аминокислоты Аспартат, Глицин, Глутамин, СО2 и два одноуглеродных производных тетрагидрофолата: метенил-Н4-фолат и формил-Н4-фолат.

3.Биосинтез пиримидиновых нуклеотидов. Источники атомов пиримидинового кольца, реакции синтеза, роль витаминов в9 и в12.

Глутамин, аспартат,СО2

4.Распад пуриновых и пиримидиновых нуклеотидов. Особенности и реакции процесса распада, конечные метаболиты. Нарушения обмена пуриновых нуклеотидов при подагре.

Катаболизм пуриновых нуклеотидов

У человека основным продуктом катаболизма пуриновых нуклеотидов является мочевая кислота (рис.5.). Её образование идет путем гидролитического отщепления фосфатного остатка от нуклеотидов с помощью нуклеотидаз или фосфатаз, фосфоролиза N-гликозидной связи нуклеотидов пуриннуклеозидфосфорилазой, последующего дезаминирования азотисных оснований.

От АМФ и аденозина аминогруппа удаляется гидролитически аденозиндезаминазой с образованием ИМФ или инозина. ИМФ и ГМФ превращяются в соответствующие нуклеозиды: инозин и гуанозин под действием 5’-нуклеотидазы. Пуриннуклеозидфосфорилаза катализирует расщепление N-гликозидной связи в инозине и гуанозине с образованием рибозо-1-фосфата и азотистых оснований : гуанина и гипоксантина. Гуанин дезаминируется и превращяется в ксантин, а гипоксантин окисляется в ксантин с помощью ксантиноксидазы, которая катализирует и дальнейшее окисление ксантина в мочевую кислоту.

/Ксантиноксидаза – аэробная оксидоредуктаза, простетическая группа которой включает ион молибдена, железа (Fе3+) и ФАД+./

Катаболизм пиримидиновых нуклеотидов

Уже отмечалось, что цитидиловые нуклеотиды могут гидролитически терять аминогруппу и превращяться в УМФ. Когда от УМФ при участии нуклетидазы или ( фосфатазы ) и уридинфосфарилазы отщепляется неорганический фосфат и рибоза, то остается азотистое основание – урацил. Аналогично распределяются дезоксирибонуклеотиды, и из dЦМФ образуется урацил, а из dТМФ – тимин.

Пиримидиновые основания при участии дигидропиримидиндегидрогеназы присоединяют 2 атома водорода по двойной связи кольца с образованием дигидроурацила или дигидротимина. Оба гетероцикла могут взаимодействовать с водой в реакции, катализируемой дигидропиримидинциклогидролазой, и дигидроурацил превращяется в β-уреидоизопропионовую кислоту, а дигидротимин - в β- уреидоизомасляную кислоту. Оба β-уреидопроизводных под действием общего для них фермента уреидопропионазы расщепляются с образованием СО2, NH4+ и β-аланина или β-аминоизомасляной кислоты.соответственно.

/Мочевая кислота выводится из организма с мочой Однако в почках происходит ее интенсивная реабсорбция и концентрация мочевой кислоты в крови поддерживается на постоянном уровне 0.12-0.30 ммоль/л/

Функции мочевой кислоты:

  • Является мощным стимулятором ЦНС - ингибирует фосфодиэстеразу цАМФ (внутриклеточный мессенджер адреналина и норадреналина), пролонгируя действие этих гормонов

  • Обладает антиоксидантными свойствами

За сутки в организме образуется около 1 грамма мочевой кислоты

  • Мочевая кислота и ее соли - ураты (натриевые соли мочевой кислоты) плохо растворимы в воде и могут выпадать в осадок и откладываться в сосудах

  • Осадок уратов фагоцитируется макрофагами, которые погибая, освобождают гидролитические ферменты. Действие этих ферментов на окружающие ткани приводит к воспалению.

Даже незначительное повышение концентрации уратов или мочевой кислоты приводит к образованию осадков = Это ведет к развитию заболеваний - МОЧЕКАМЕННОЙ БОЛЕЗНИ (при отложении кристаллов в почечной лоханке или в мочевом пузыре) и ПОДАГРЫ (при отложении солей мочевой кислоты в суставах).

5.Строение ДНК и РНК. Химические связи, участвующие в формировании их структуры. Функции нуклеиновых кислот. Виды переноса генетической информации. Биологическая роль комплементарности азотистых оснований.

РНК (рибонуклеиновые кислоты) — нуклеиновые кислоты, линейные полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты(3), рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания — аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин).

В составе нуклеиновых кислот мононуклеотиды связаны 3’,5’-диэфирными связями между рибозами соседних мононуклеотидов через остаток фосфорной кислоты

Биологическая роль нуклеиновых кислот

- ДНК: /хранение генетической информации/

- РНК:

/хранение генетической информации у некоторых вирусов/

/реализация генетической информации: и-РНК (м-РНК) - информационная (матричная), т-РНК (транспортная), р-РНК (рибосомальная)/

Биологическое значение комплементарности – обеспечение передачи генетической информации по матричному типу

/Дочерний полинуклеотид комплементарен материнской полинуклеотидной цепочке/

Виды переноса генетической информации

=/ДНК → ДНК – репликация/

=/ДНК → иРНК, рРНК, тРНК – транскрипция/

=/РНК → белок – трансляция/

=/РНК → ДНК обратная транскрипция ( у РНК-содержащих вирусов)/