
- •1. Ферменти: визначення; властивості ферментів як біологічних каталізаторів.
- •2. Класифікація та номенклатура ферментів, характеристика окремих класів
- •3. Будова та механізми дії ферментів. Активний та алостеричний (регуляторний) центр.
- •7. Механізми дії та кінетика ферментативних реакцій: залежність швидкості
- •10. Типи інгібування ферментів: зворотнє (конкурентне, неконкурентне) та
- •11. Регуляція ферментативних процесів. Шляхи та механізми регуляції:
- •14. Ензимодіагностика патологічних процесів та захворювань.
- •15. Ензимотерапія – застосування ферментів, їх активаторів та інгібіторів в
- •16. Принципи та методи виявлення ферментів у біооб’єктах. Одиниці виміру
- •Біохімія водо – та жиророзчинних вітамінів
- •2. Вітамін в2: структура, коферментна форма, біологічні властивості, механізм дії, джерела, добова потреба, можливі патології.
- •3. Метаболізм вуглеводів та його регуляція.
- •4. Вітамін в3: структура, кофермента форма, біологічні властивості, механізм
- •5. Вітамін в5: структура, коферментна форма, біологічні властивості, механізм дії, джерела, добова потреба, можливі патології.
- •6. Вітамін в6: структура, коферментна форма, біологічні властивості, механізм дії, джерела, добова потреба, можливі патології.
- •7. Вітамін в12: будова, біологічні властивості, механізм дії, джерела, добова
- •8. Вітамін с: будова, біологічні властивості, механізм дії, джерела, добова
- •9. Вітамін н: будова, біологічні властивості, механізм дії, джерела, добова потреба, можливі патології.
- •10. Вітамін р: будова, біологічні властивості, механізм дії, джерела, добова потреба, можливі патології.
- •13. Вітамін д: будова, біологічні властивості, механізм дії, джерела, добова потреба, можливі патології.
- •14. Вітамін к: будова, біологічні властивості, механізм дії, джерела, добова потреба, можливі патології.
- •Біохімія механізму дії гормонів
- •Основні закономірності обміну речовин. Цикл трикарбонових кислот.
- •1. Обмін речовин (метаболізм) – загальні закономірності протікання катоболічних та анаболічних процесів.
- •5. Субстратне фосфорилювання цтк.
- •Молекулярні основи біоенергетики.
- •1. Реакції біологічного окислення; типи реакцій (дегідрогеназні, оксидазні, оксигеназні) та їх біологічне значення. Тканинне дирхання.
- •2. Флавінзалежні дегідрогенази
- •3. Послідовність компонентів дихального ланцюга мітохондрій. Молекулярні
- •4. Окисне фосфорилювання: пункти спряження транспорту електронів та фосфорилювання, коефіцієнт окисного фосфорилювання.
- •Пункти спряження транспорту електронів та окисного фосфорилювання
- •Ділянки дихального ланцюга мітохондрій, де вивільнення хімічної енергії достатнє для синтезу молекули атф
- •7. Мікросомальне окислення: цитохром р-450; молекулярна організація ланцюга переносу електронів.
- •Обмін вуглеводів
- •3. Аеробне окислення глюкози. Етапи репетворення глюкози до co2 , h2o.
- •4. Окислювальне декарбоксилювання пірувату. Ферменти, коферменти та послідовність реакцій в мультиферментному комплексі.
- •5. Гліколітична оксидоредукція : субстратне фосфорилювання та човникові
- •6. Порівняльна характеристика біоенергетики аеробного та анаеробного окислення глюкози, ефект Пастера.
- •7. Фосфоролітичний шлях розщеплення глікогену в печінці та мязах.
- •8. Біосинтез глікогену: ферментативні реакції, фізіологічне значення.
- •9. Механізми реципрокної регуляції глікогенолізу та глікогенезу за рахунок
- •10. Роль адреналіну, глюкагону та інсуліну в гормональній регуляції обміну
- •11. Генетичні порушення метаболізму глікогену (глікогенози, аглікогенози).
- •12. Глюконеогенез: субстрати , ферменти та фізіологічне значення процесу.
- •13. Глюкозо-лактатний (цикл Корі) та глюкозо-аланіновий цикли.
- •Метаболізм амінокислот. Ензимопатії амінокислотного обміну
- •Амінотрансферазні реакції
- •Окислення біогенних амінів
- •5. Шляхи утворення та знешкодження аміаку в організмі.
- •Генетичні дефекти ферментів синтезу сечовини
- •12. Обмін циклічної амінокислоти триптофану та його спадкові ензимопатії.
8. Біосинтез глікогену: ферментативні реакції, фізіологічне значення.
Регуляція активності глікогенсинтази.
Глюкоза→ г-6-ф, Ė гексокіназа або глюкокіназа; г-6-ф→ г-1-ф, Ė фосфоглюкомутаза. Утворюється активна форма глюкози, для синтезу глікогену: г-1-ф + УТФ↔ УДФ-1-г, Ė УДФ-глюкозопірофосфорилаза. Синтез глікогену (утворення α-1,4-глікозидних зв`язків): УДФ-1-г + термінальний залишок глюкози (С6Н10О5)n→ УДФ + (С6Н10О5)n+1; Ė глікогенсинтаза (УДФ-глікогентрансфераза). Розгалуження утворюються переносом кінцевого фрагменту полісахариду з 6-7 мономерів на кілька мономерів далі; Ė аміло(1,4-1,6)глікозилаза. Регуляція: (див. «регуляція» 62). У той час, як глікогенфосфорилаза фосфорилюється і стає активною – глікогенсинтаза теж фосфорилюється (цАМФ-залежною протеїнкіназою), але в цьому стані – неактивна. У гепатоцитах глікоген зберігається у вигляді великих цитоплазматичних гранул. Елементарна так звана β-частинка, що є однією молекулою глікогену, має діаметр близько 21 нм і включає до 55 000 залишків глюкози та має 2000 нередукуючих кінців. 20-40 таких часточок разом утворюють α-розетки, які можна бачити у під мікроскопом у тканинах тварин, яких добре годують. Проте вони зникають після 24-годинного голодування. Глікогенові гранули – це складні агрегати, до складу яких крім самого глікогену входять ферменти, що синтезують і розщеплюють його, а також регуляторні молекули (рис. 3).
Глікоген у м’язах слугує джерелом швидкої енергії як за аеробного, так і за анаеробного метаболізму. Його запаси можуть бути вичерпані за одну годину інтенсивного фізичного навантаження.
9. Механізми реципрокної регуляції глікогенолізу та глікогенезу за рахунок
каскадного цАМФ-залежного фосфорилювання ферментних білків.
Субстратом гліколізу в м'язах служать глюкоза, яка надходить із крові, і глюкозні залишки депонованого глікогену. Внаслідок послідовної дії глікогенфосфорилази і фосфоглюкомутази глюкозні залишки глікогену перетворюються в глюкозо-6-фосфат, який далі включається в процес гліколізу:
За умов глікогенолізу АТФ затрачається тільки один раз для утворення фруктозо-1,6-дифосфату. Якщо ж врахувати затрати АТФ для біосинтезу глікогену (дві молекули АТФ для включення одного залишку глюкози), тоді чистий вихід складає тільки 1 молекулу АТФ на 1 залишок глюкози. Витрачання АТФ для синтезу глікогену в м'язах має місце в стані спокою, коли депонування глікогену достатньо забезпечене киснем і енергією. А під час інтенсивного фізичного навантаження анаеробний розпад глікогену до молочної кислоти зумовлює більший вихід АТФ, ніж розпад глюкози.
Глікогене́з — процес біосинтезу глікогену, що відбувається у клітинах тих живих організмів, які використовують цей полісахарид для зберігання глюкози (тварин, грибів та багатьох прокаріот). У ссавців протікає з різною інтенсивністю у всіх тканинах, але найбільш виражено у печінці та скелетних м'язах. Субстратом для глікогенезу є уридиндифосфатглюкоза, тобто він здійснюється шляхом відмінним від деградації глікогену — глікогенолізу, основним продуктом якого є глюкозо-1-фосфат. Ключовимферментом глікогенезу є глікогенсинтаза.
10. Роль адреналіну, глюкагону та інсуліну в гормональній регуляції обміну
глікогену в мязах та печінці.
Адреналін стимулює розпад і гальмує синтез глікогену в печінці, скелетних м'язах, міокарді. Секреція його у стресових ситуаціях зумовлює вивільнення глюкози із печінки в кров для постачання інших органів, а в м'язах – розпад глікогену до молочної кислоти з виділенням енергії, що забезпечує швидке зростання м'язової активності. Глюкагон стимулює розпад глікогену печінки, але не впливає на глікоген м'язів. Секретується підшлунковою залозою при зниженні концентрації глюкози в крові.
Гормон підшлункової залози інсулін стимулює надходження глюкози в клітини і синтез глікогену. Механізми його дії ще до кінця не з'ясовані. Одним із них є активація інсуліном фосфодіестерази цАМФ, що приводить до зниження внутрішньоклітинного рівня цАМФ, у результаті стимулюється утворення неактивної фосфорилази й активної глікогенсинтази. У гепатоцитах інсулін підвищує активність глюкокінази.