- •1 Предмет, задачи и методы экологии
- •Учение о биосфере
- •4.Круговорот веществ в биосфере
- •8.Трофические взаимодействия в экосистемах
- •9.Продуктивность экосистем
- •[Править]Энергетические соотношения в экосистемах (экологические эффективности)
- •Экологические пирамиды
- •10.Динамика экосистемы
- •11.Организм и среда
- •14.Закономерности действия экологических факторов на организм
- •Лимитирующий фактор
- •15. Адаптация к факторам среды
- •16.Влияние природно-экологических факторов на здоровье человека
- •17.Влияние социально-экологических факторов на здоровье человека
- •2. Антропогенные воздействия на природу на разных этапах развития человеческого общества
- •19.Ресурсы земли. Энергетическая проблема
- •6. Экологические проблемы биосферы
- •32.Основы экономики природопользования
- •1.Эколого-экономический учет природных ресурсов и загрязнителей
- •Лицензия, договор, лимиты на природопользование
- •31. Основы экологического права
- •34. Экологические нормативы и стандарты
Учение о биосфере
По современным представлениям, биосфера – это особая оболочка земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами.
Эти представления базируются на учении В. И. Вернадского(1863 –1945) о биосфере
Учение Вернадского о биосфере – это целостное фундаментальное учение, органично связанное с важнейшими проблемами сохранения и развития жизни на Земле, знаменующее собой принципиально новый подход к изучению планеты как развивающейся саморегулирующейся системы в прошлом, настоящем и будущем.
По представлениям В. И. Вернадского
В структуре биосферы Вернадский выделял семь видов вещества:
живое;
биогенное (возникшее из живого или подвергшееся переработке);
косное (абиотическое, образованное вне жизни);
биокосное (возникшее на стыке живого и неживого; к биокосному, по Вернадскому, относится почва);
вещество в стадии радиоактивного распада;
рассеянные атомы;
вещество космического происхождения. Все эти семь типов веществ геологически связаны между собой.
Вернадский был сторонником гипотезы панспермии. Методы и подходы кристаллографии Вернадский распространял на вещество живых организмов. Живое вещество развивается в реальном пространстве, которое обладает определённой структурой, симметрией и дисимметрией. Строение вещества соответствует некоему пространству, а их разнообразие свидетельствует о разнообразии пространств. Таким образом, живое и косное не могут иметь общее происхождение, они происходят из разных пространств, извечно находящихся рядом в Космосе. Вернадский связывал живое как единство пространства-времени.
4.Круговорот веществ в биосфере
Круговорот веществ и превращение энергии как основа существования биосферы. Деятельность живых организмов в биосфере сопровождается извлечением из окружающей среды больших количеств минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает биогенный (с участием живых организмов) круговорот веществ в природе, т. е. циркуляция веществ между литосферой, атмосферой, гидросферой и живыми организмами. Под круговоротом веществ понимают повторяющийся процесс превращения и перемещения веществ в природе, имеющий более или менее выраженный циклический характер.
В круговороте веществ принимают участие все живые организмы, поглощающие из внешней среды одни вещества и выделяющие в нее другие. Так, растения потребляют из внешней среды углекислый газ, воду и минеральные соли и выделяют в нее кислород. Животные вдыхают кислород, выделенный растениями, а поедая их, усваивают синтезированные из воды и углекислого газа органические вещества и выделяют углекислый газ, воду и вещества непереваренной части пищи. При разложении бактериями и грибами отмерших растений и животных образуется дополнительное количество углекислого газа, а органические вещества превращаются в минеральные, которые попадают в почву и снова усваиваются растениями. Таким образом, атомы основных химических элементов постоянно совершают миграцию из одного организма в другой, из почвы, атмосферы и гидросферы — в живые организмы, а из них—в окружающую среду, пополняя таким образом неживое вещество биосферы. Эти процессы повторяются бесконечное число раз. Так, например, весь атмосферный кислород проходит через живое вещество за 2 тыс. лет, весь углекислый газ — за 200—300 лет.
Непрерывная циркуляция химических элементов в биосфере по более или менее замкнутым путям называется биогеохимическим циклом. Необходимость такой циркуляции объясняется ограниченностью их запасов на планете. Чтобы обеспечить бесконечность жизни, химические элементы должны совершать движение по кругу. Круговорот каждого химического элемента является частью общего грандиозного круговорота веществ на Земле, т. е. все круговороты тесно связаны между собой.
5 Экосистема: состав, структура, разнообразие
Состав и структура экологической системы. Экологическая пирамида Экологическая система – основная функциональная единица экологии, включающая в себя живые организмы (биоценоз) и среду обитания (экотоп), причем каждая из этих частей влияет на другую и обе необходимы для поддержания жизни. Экосистемы представляют собой основные природные единицы на поверхности Земли. Это не только комплекс живых организмов, но и все сочетания физических факторов. Всюду, где можно наблюдать отчетливое единство растений и животных, объединенных отдельным участком окружающей среды, говорят об экологической системе. Понятие экосистемы не ограничивается какими-то признаками ранга, размера, сложности и происхождения. Поэтому оно применимо как к относительно простым искусственным (аквариум, теплица, пшеничное поле), так и к сложным естественным комплексам организмов и среды их обитания (озеро, лес, океан). В состав экосистемы входят неживые и живые компоненты. Неживые (абиотические) компоненты: 1) неорганические вещества (N2, C02, Н2О и др.), включающиеся в природные круговороты; 2)органические соединения (углеводы, белки, аминокислоты, гумусовые вещества и др.), связывающие биотическую и абиотическую части экосистем; 3)климатический режим (освещенность, температура, влажность и другие физические факторы). Живые (биотические) компоненты экосистем: 1) продуценты – автотрофные (самостоятельно питающиеся) организмы, главным образом, зеленые растения, которые создают органические вещества из простых неорганических веществ. Автотрофы составляют основную массу всех живых существ и полностью отвечают за образование всего нового органического вещества в любой экосистеме, т.е. являются производителями продукции, 2)макроконсументы (консументы 1, 2 и т.д. порядка) – гетеротрофные (питающиеся другими) организмы, главным образом, животные, которые поедают растения и другие организмы. В отличие от автотрофов продуцентов, гетеротрофы выступают как потребители и разрушители органических веществ, 3)микроконсументы (редуценты) – гетеротрофные организмы, преимущественно бактерии и грибы, которые разрушают сложные соединения мертвой протоплазмы, поглощают некоторые продукты разложения и высвобождают неорганические питательные вещества, пригодные для использования продуцентами. Структура экосистемы. В зависимости от характера питания в экосистеме строится экологическая пирамида (пирамида питания), состоящая из нескольких трофических уровней: 1) (низший) занимают автотрофные организмы; 2)гетеротрофные организмы 1 порядка, использующие в пищу биомассу растений; 3)гетеротрофы 2 порядка, питающиеся гетеротрофами 1 порядка, и т.д. В наземных экосистемах масса продуцентов больше, чем масса консументов, масса консументов 1-ого порядка больше, чем консументов 2-ого порядка и т.д. Это обусловлено тем, что пища используется не только на рост организмов, но и на удовлетворение энергетических затрат: дыхание, движение, размножение, поддержание температуры. Поэтому графически модель экосистемы имеет вид пирамиды.
Трофическая структура. Виды, входящие в состав экосистемы, связаны между собой пищевыми связями, так как служат объектами питания друг для друга.
Последовательность питающихся друг другом организмов называют пищевой, или трофической, цепью. Отдельные звенья трофической цепи называют трофическими уровнями. Пищевые цепи состоят, как правило, из трех - пяти звеньев.
Различают два типа трофических (пищевых) цепей. Пищевые цепи, которые начинаются с растений, идут через растительноядных животных к другим потребителям, называют пастбищными или цепями выедания. Пищевые цепи другого типа начинаются с отмерших растений, трупов или помета животных и идут к мелким животным и микроорганизмам. Эти цепи называют детритными, или цепями разложения.
Линейные пищевые цепи - большая редкость в природе. Как правило, пищевые цепи в экосистеме тесно переплетаются. Совокупность пищевых связей в экосистеме образует пищевые сети, в которых многие консументы служат пищей нескольким членам экосистемы. В то же время некоторые животные могут принадлежать сразу к нескольким трофическим уровням, так как питаются и растительной, и животной пищей, то есть являются всеядными (например, медведь).
Видовая структура экосистемы - это разнообразие видов, взаимосвязь и соотношение их численности. Различные сообщества, входящие в состав экосистемы, состоят из разного числа видов - видового разнообразия. Видовое разнообразие зависит от соотношения численности видов в экосистеме. Уменьшение видового разнообразия угрожает самому существованию вида в силу сокращения генетического разнообразия - запаса рецессивных аллелей, обеспечивающего приспособленность популяций к меняющимся условиям среды обитания.
В свою очередь, видовое разнообразие служит основой экологического разнообразия - разнообразия экосистем. Совокупность генетического, видового и экологического разнообразия составляет биологическое разнообразиепланеты.
Деятельность человека по влиянию на биологическое разнообразие планеты превосходит все известные в прошлом геологические катастрофы. Очень важно не допустить такого снижения биоразнообразия, которое привело бы к снижению устойчивости экосистем, перешло бы границы их самовосстановительных возможностей.
Пространственная структура экосистемы. Популяции разных видов в экосистеме распределены определенным образом - образуют пространственную структуру. Различают вертикальную и горизонтальную структуры экосистемы.
Основу вертикальной структуры формирует растительность.
Растительное сообщество определяет, как правило, облик экосистемы. Растения в значительной мере влияют на условия существования остальных видов. В лесу это крупные деревья, на лугах и в степях - многолетние травы, а в тундрах господствуют мхи и кустарнички.
Обитая совместно, растения одинаковой высоты создают своего рода этажи - ярусы. Имеется и подземная ярусность, что связано с разной глубиной проникновения в почву корневых систем растений. Благодаря ярусному расположению растения наиболее эффективно используют световой поток, при этом снижается конкуренция: светолюбивые растения занимают верхний ярус, а теневыносливые развиваются под их пологом.
Животные тоже приспособлены к жизни в том или ином растительном ярусе.
Вследствие неоднородности рельефа, свойств почвы, различных биологических особенностей растения и в горизонтальном направлении располагаются микрогруппами, различными по видовому составу. Это явление носит название мозаичности. Мозаичность растительности - это своего рода "орнамент", образованный скоплениями растений разных видов.
Благодаря вертикальной и горизонтальной структурам обитающие в экосистеме организмы более эффективно используют минеральные вещества почвы, влагу, световой поток.
Классификация экосистем
При классификации наземных экосистем обычно используют признаки растительных сообществ (составляющих основу экосистем) и климатические (зональные) признаки. Так, выделяются определенные типы экосистем, например тундра лишайниковая, тундра моховая, лес хвойный (еловый, сосновый), лес лиственный (березняк), лес дождевой (тропический), степь, кустарники (ивняк), болото травянистое, болото сфагновое.
Основные наземные экосистемы:
1. Тундра: арктическая и альпийская;
2. Бореальные хвойные леса;
3. Листопадный лес умеренной зоны;
4. Степь умеренной зоны;
5. Тропические злаковники и саванна;
6. Чапарраль (районы с дождливой зимой и засушливым летом);
7. Пустыня: травянистая и кустарниковая;
8. Полувечнозеленый тропический лес (районы с выраженными влажным и сухим сезонами);
9. Вечнозеленый тропический дождевой лес.
Размещение по земной поверхности основных наземных биомов определяют два абиотических фактора - температура и количество осадков. Климат в разных районах земного шара неодинаков. Годовая сумма осадков меняется от 0 до 2500 мм и более. При этом они выпадают равномерно в течение года или их основная доля приходится на определенный период - влажный сезон. Среднегодовая температура также варьирует от отрицательных величин до 380С. Температуры могут быть практически постоянными в течение всего года (у экватора) или меняться по сезонам.
6.Популяции в экосистеме
Чрезвычайно разнообразные связи популяций в экосистемах прежде всего подразделяют на прямые и косвенные. В первом случае наблюдается непосредственный контакт между особями взаимодействующих популяций, форма которого вырабатывалась исторически, во втором – адаптации к непосредственному контакту у особей взаимодействующих популяций нет, и в процессе эволюции они приспосабливались лишь к результатам жизнедеятельности друг друга. Прямые и косвенные связи могут проявляться в самых разнообразных формах взаимодействий, среди которых по функциональному признаку можно, в частности, выделить топические, трофические, фабрические и форические. Первая форма связи – случай, когда особи популяции одного вида кондиционируют (видоизменяют) физико-химические условия существования другого (например аэрация воды фотосинтетиками). Трофические связи проявляются в питании особей одного вида за счет живых особей другого вида, продуктов их жизнедеятельности или их мертвых остатков. Если особи одного вида используют представителей другого, их части или мертвые остатки для «фабрикации» своих сооружений, имеет место фабрическая связь. Форические связи возникают, когда перемещение особей одного вида закономерно осуществляется представителями другого.
Частью сложной сети взаимоотношений в экосистеме являются консорции – системы, состоящие из организмов демерминантов и зависящих от них непосредственно консортов. Трофоконсорты связаны с детерминантом трофически, топоконсорты – топически и т.д. Консорционные связи ведут к выработке у разных организмов взаимообусловленности их функций, к усилению биоценотических взаимодействий.
По своему биологическому значению взаимосвязи между популяциями крайне многообразны. Наиболее часто они проявляются в таких формах, как хищничество и паразитизм, конкуренция и нейтрализм, протокооперация и мутуализм, карпозы, комменсализм и аменсализм, стимулирование и ингибирование.
7.Биотические связи организмов в экосистеме
Экосистема основана на единстве живого и неживого вещества. Суть этого единства проявляется в следующем. Из элементов неживой природы, главным образом молекул CO2 и H2O, под воздействием энергии солнца синтезируются органические вещества, составляющие все живое на планете. Процесс создания органического вещества в природе происходит одновременно с противоположным процессом - потреблением и разложением этого вещества вновь на исходные неорганические соединения. Совокупность этих процессов протекает в рамках экосистем различных уровней иерархии. Чтобы эти процессы были уравновешены, природа за миллиарды лет отработала определенную структуру живого вещества системы.
Движущей силой в любой материальной системе служит энергия. В экосистемы она поступает главным образом от Солнца. Растения за счет содержащегося в них пигмента хлорофилла улавливают энергию излучения Солнца и используют ее для синтеза основы любого органического вещества - глюкозы C6H12O6.
Кинетическая энергия солнечного излучения преобразуется таким образом в потенциальную энергию, запасенную глюкозой. Из глюкозы вместе с получаемыми из почвы минеральными элементами питания - биогенами - образуются все ткани растительного мира - белки, углеводы, жиры, липиды, ДНК, РНК, то есть органическое вещество планеты.
Кроме растений продуцировать органическое вещество могут некоторые бактерии. Они создают свои ткани, запасая в них, как и растения, потенциальную энергию из углекислого газа без участия солнечной энергии. Вместо нее они используют энергию, которая образуется при окислении неорганических соединений, например, аммиака, железа и особенно серы (в глубоких океанических впадинах, куда не проникает солнечный свет, но где в изобилии скапливается сероводород, обнаружены уникальные экосистемы). Это так называемая энергия химического синтеза, поэтому организмы называются хемосинтетиками.
Таким образом, растения и хемосинтетики создают органическое вещество из неорганических составляющих с помощью энергии окружающей среды. Их называют продуцентами или автотрофами. Высвобождение запасенной продуцентами потенциальной энергии обеспечивает существование всех остальных видов живого на планете. Виды, потребляющие созданную продуцентами органику как источ-ник вещества и энергии для своей жизнедеятельности, называются консументами или гетеротрофами.
Консументы - это самые разнообразные организмы (от микроорганизмов до синих китов): простейшие, насекомые, пресмыкающиеся, рыбы, птицы и, наконец, млекопитающие, включая человека.
Консументы, в свою очередь, подразделяются на ряд подгрупп в соответствии с различиями в источниках их питания.
Животные, питающиеся непосредственно продуцентами, называются первичными консументами или консументами первого порядка. Их самих употребляют в пищу вторичные консументы. Например, кролик, питающийся морковкой, - это консумент первого порядка, а лиса, охотящаяся за кроликом, - консумент второго порядка. Некоторые виды живых организмов соответствуют нескольким таким уровням. Например, когда человек ест овощи - он консумент первого порядка, говядину - консумент второго порядка, а употребляя в пищу хищную рыбу, выступает в роли консумента третьего порядка.
Первичные консументы, питающиеся только растениями, называются растительноядными или фитофагами. Консументы второго и более высоких порядков - плотоядные. Виды, употребляющие в пищу как растения, так и животных, относятся к всеядным, например, человек.
Мертвые растительные и животные остатки, например опавшие листья, трупы животных, продукты систем выделения, называются детритом. Это органика! Существует множество организмов, спе-циализирующихся на питании детритом. Они называются детритофагами. Примером могут служить грифы, шакалы, черви, раки, термиты, муравьи и т.п. Как и в случае обычных консументов, различают первичных детритофагов, питающихся непосредственно детритом, вторичных и т. п.
Наконец, значительная часть детрита в экосистеме, в частности опавшие листья, валежная древесина, в своем исходном виде не поедается животными, а гниет и разлагается в процессе питания ими грибов и бактерий.
Поскольку роль грибов и бактерий столь специфична, их обычно выделяют в особую группу детритофагов и называют редуцентами. Редуценты служат на Земле санитарами и замыкают биогеохимический круговорот веществ, разлагая органику на исходные неорганические составляющие - углекислый газ и воду.
Таким образом, несмотря на многообразие экосистем, все они обладают структурным сходством. В каждой из них можно выделить фотосинтезирующие растения - продуценты, различные уровни консументов, детритофагов и редуцентов. Они и составляют биотическую структуру экосистем.
