36. Стационарные случайные функции. Определение в «узком» и «широком» смысле. Понятие «Белого шума».

Случа́йный проце́сс (случайная функция) в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или координаты.

Определение. Пусть дано вероятностное пространство . Параметризованное семейство случайных величин.

где T произвольное множество, называется случайной функцией.

Терминология

- Если , то параметр может интерпретироваться как время. Тогда случайная функция {Xt} называется случайным процессом. Если множество T дискретно, например , то такой случайный процесс называется случа́йной после́довательностью.

  • Если , где , то параметр может интерпретироваться как точка в пространстве, и тогда случайную функцию называют случа́йным по́лем.

Данная классификация нестрогая. В частности, термин "случайный процесс" часто используется как безусловный синоним термина "случайная функция".

Классификация

- Случайный процесс называется стационарным, если все многомерные законы распределения зависят только от взаимного расположения моментов времени , но не от самих значений этих величин. В противном случае, он называется нестационарным.

- Случайная функция называется стационарной в широком смысле, если её математическое ожидание и дисперсия постоянны, а АКФ зависит только от разности моментов времени, для которых взяты ординаты случайной функции. Понятие ввёл А. Я. Хинчин.

- Если ординаты случайной функции подчиняются нормальному закону распределения, то и сама функция называется нормальной.

- Случайные функции, закон распределения ординат которых в будущий момент времени полностью определяется значением ординаты процесса в настоящий момент времени и не зависит от значений ординат процесса в предыдующие моменты времени, называются марковскими.

- Случайный процесс называется процессом с независимыми приращениями, если для любого набора t1,t2,...,tn, где n > 2, а t1 < t2 < ... < tn, случайные величины , , ...,  независимы.

- Если при определении моментных функций стационарного случайного процесса операцию усреднения по статистическому ансамблю можно заменить усреднением по времени, то такой стационарный случайный процесс называется эргодическим.

- Среди случайных процессов выделяют импульсные случайные процессы.

Белый шум — стационарный шум, спектральные составляющие которого равномерно распределены по всему диапазону задействованных частот. Примерами белого шума являются шум водопада или шум Шоттки на клеммах большого сопротивления. Название получил от белого света, содержащего электромагнитные волны частот всего видимого диапазона электромагнитного излучения.

В природе и технике «чисто» белый шум (то есть белый шум, имеющий одинаковую спектральную мощность на всех частотах) не встречается (ввиду того, что такой сигнал имел бы бесконечную мощность), однако под категорию белых шумов попадают любые шумы, спектральная плотность которых одинакова (или слабо отличается) в рассматриваемом диапазоне частот.

Статистические свойства

Пример реализации процесса со свойствами белого шума.

Термин «белый шум» обычно применяется к сигналу, имеющему автокорреляционную функцию, математически описываемую дельта-функцией Дирака по всем измерениям многомерного пространства, в котором этот сигнал рассматривается. Сигналы, обладающие этим свойством, могут рассматриваться как белый шум. Данное статистическое свойство является основным для сигналов такого типа.

То, что белый шум некоррелирован по времени (или по другому аргументу), не определяет его значений во временной (или любой другой рассматриваемой аргументной) области. Наборы, принимаемые сигналом, могут быть произвольными с точностью до главного статистического свойства (однако постоянная составляющая такого сигнала должна быть равна нулю). К примеру, двоичный сигнал, который может принимать только значения, равные нулю или единице, будет являться белым шумом только если последовательность нулей и единиц будет некоррелирована. Сигналы, имеющие непрерывное распределение (к примеру, нормальное распределение), также могут быть белым шумом.

Иногда ошибочно предполагается, что гауссовский шум (то есть шум с гауссовским распределением по амплитуде — см. нормальное распределение) обязательно является белым шумом. Однако эти понятия неэквивалентны. Гауссовский шум предполагает распределение значений сигнала в виде нормального распределения, тогда как термин «белый» имеет отношение к корреляции сигнала в два различных момента времени (эта корреляция не зависит от распределения амплитуды шума). Белый шум может иметь как распределение Гаусса, так и распределение Пуассона, Коши и т. д. Гауссовский белый шум в качестве модели хорошо подходит для математического описания многих природных процессов (см. Аддитивный белый гауссовский шум).