- •1. Структура и классификация полимеров. Изомерия полимеров. Конформация и конфигурация макромолекул полимеров. Стереорегулярные и атактические полимеры.
- •3. В чем сходство и различия растворов нмс и вмс.
- •5. Что означает термодинамическое сродство компонентов раствора? Какие свойства раствора оно характеризует? Как оценивается термодинамическое сродство?
- •6. Какие растворы считаются концентрированными, какие – разбавленными?
- •7. Каковы особенности свойств разбавленных растворов полимеров? Чем они обусловлены?
- •8. Какие виды взаимодействия существуют в растворах полимеров и как они сказываются на свойствах растворов?
- •9. Что такое характеристическая вязкость и как ее определяют?
- •10. Система полимер-растворитель характеризуется вктр. Каковы изменения энтальпий и энтропий смешения в области между вктр и θ-температурой?
- •11. Что такое θ -температура раствора и как ее определяют?
- •12. Что означает второй вириальный коэффициент для растворов полимеров в хороших растворителях?
- •13. Каким математическим условиям удовлетворяет параметр Флори и второй вириальный коэффициент для растворов полимеров в плохом растворителе?
- •14. От каких факторов зависит предельная растворимость полимеров?
- •15. Каковы вероятные причины зависимости значений второго вириального коэффициента и параметра взаимодействия от молекулярной массы полимера?
- •16. Каковы вероятные причины зависимости значений второго вириального коэффициента и параметра взаимодействия от температуры?
- •17. Термодинамические критерии растворимости полимеров.
- •18. Идеальные и неидеальные растворы.
- •19. Теория регулярных растворов.
- •20. Классическая теория растворов Флори-Хаггинса.
- •21. Теория разбавленных растворов.
- •22. Концентрированные растворы. Структура концентрированных растворов полимеров и их свойства.
- •23. Какова роль пластификаторов полимеров? Каким показателем оценивается эффект пластификации?
- •24. Почему характеристическая вязкость полимера в термодинамически хорошем растворителе больше, чем в плохом?
- •25. В чем особенности структуры наполненных полимеров? Как изменяются свойства полимеров при введении наполнителей?
- •26. Теплота растворения и параметр растворимости.
- •27. Фазовое равновесие в системе полимер-растворитель
- •29.Термодинамические критерии растворимости полимера
- •30.Межмолекулярные взаимодействия и энергия когезии в полимерах
- •31.Наполненые полимеры
- •32. Конц растворы и расплавы полимеров. Ньютоновские и не ньютоновские жидкости
24. Почему характеристическая вязкость полимера в термодинамически хорошем растворителе больше, чем в плохом?
25. В чем особенности структуры наполненных полимеров? Как изменяются свойства полимеров при введении наполнителей?
Для того чтобы придать полимерным материалам необходимые технологические и эксплуатационные свойства, в них часто вводят наполнители. Они равномерно распределяются в объеме полимерной матрицы, и образуется система, в которой полимер является дисперсионной средой, а частицы наполнителя — дисперсной фазой. Введение наполнителей приводит к изменению типа и размеров кристаллитов. При малых концентрациях наполнитель является искусственным зародышем кристаллизации, при больших — степень кристалличности уменьшается. Усилению полимеров способствует также возникновение тонкой прослойки полимера между частицами наполнителя. Образование такой прослойки способствует возникновению мелкокристаллической структуры и уменьшает вероятность образования дефектов структуры, являющихся очагами разрушения. Изменения свойств полимеров при их адсорбции на поверхности наполнителя столь значительны, что наполненный полимер можно рассматривать как трехкомпонентную систему: наполненный полимер, адсорбированный полимер, образующий граничный слой с измененными свойствами на поверхности наполнителя, и наполнитель.
Низкомодульные наполнители (их иногда называют эластификаторами), в качестве которых используют эластомеры, не понижая теплостойкости и твёрдости полимера, придают материалу повышенную устойчивость к знакопеременным и ударным нагрузкам предотвращают прорастание микротрещин в связующем. Однако коэффициент термического расширения эластифицированных Пластические массы выше, а деформационная устойчивость ниже, чем монолитных связующих.
Эластификатор диспергируют в связующем в виде частиц размером 0,2—10 мкм. Это достигается полимеризацией мономера на поверхности частиц синтетических латексов, отверждением олигомера, в котором диспергирован эластомер, механическим перетиранием смеси жёсткого полимера с эластомером. Наполнение должно сопровождаться образованием сополимера на границе раздела частиц эластификатора со связующим. Это обеспечивает кооперативную реакцию связующего и эластификатора на внешнее воздействие в условиях эксплуатации материала. Чем выше модуль упругости наполнителя и степень наполнения им материала, тем выше деформационная устойчивость наполненного пластика. Однако введение высокомодульных наполнителей в большинстве случаев способствует возникновению остаточных напряжений в связующем, а следовательно, понижению прочности и монолитности полимерной фазы.
26. Теплота растворения и параметр растворимости.
Тепловой эффект, сопровождающий растворение твердого вещества в жидкости и отнесенный к 1 г растворяемого вещества, называют удельной теплотой растворения. Тепловой эффект, отнесенный к 1 моль растворяемого вещества, называют молярной теплотой растворения. Теплота растворения зависит от концентрации раствора. Различают интегральную теплоту растворения - тепловой эффект, сопровождающий процесс растворения 1 моль (молярная) или 1 г (удельная) вещества в данном количестве вещества в бесконечно большом количестве раствора заданной концентрации. Гильдебранд предложил также название этому параметру - «параметр растворимости» и обозначил его символом δ:
Согласно
Гильдебранду, теплота молекулярного
смешения жидкости и полимера в
эндотермическом процессе пропорциональна
:
где
ΔhМ
—
теплота смешения на единицу объема;
Φ
—
объемная доля компонента 1 или 2 с
пара-метрами растворимости
δ1
и
δ2
соответственно.
Если теплота молекулярного смешения должна быть не слишком большой, чтобы не препятствовать смешению, то и величина должна быть малой. В предельном случае, когда = 0, растворение определяется только энтропийным фактором. Если значения δ двух веществ приблизительно равны друг другу, то эти вещества будут смешиваться, т.е. взаимно растворяться. Это оправдывает название новой характеристики — «параметр растворимости».
Параметр растворимости определяет только теплоту молекулярного смешения жидкостей или аморфных полимеров. Любой некристаллический полимер будет растворяться в растворителе с близким значениемδ.
При
получении соотношения для параметра
растворимости было сделано предположение
об отсутствии специфических сил
взаимодействия. Однако наличие сильно
полярных групп или водородных связей
в растворителе или полимере сильно
усложняет картину. При этом может
возникать положительное взаимодействие
между полимером и растворителем, так
что энтальпийный член станет отрицательным.
Растворение будет осуществляться при
этом даже тогда, когда разность
относительно
велика.
