
- •Асинхронный двигатель с фазным ротором
- •Принцип работы асинхронных электродвигателей
- •Способы пуска асинхронных двигателей
- •Коэффициент мощности асинхронного двигателя и его зависимость от нагрузки на валу
- •Синхронные машины. Область применения.
- •Мощность электродвигателя должна удовлетворять трем условиям:
- •Проверка механической перегрузочной способности электродвигателя
Номинальный, пусковой и максимальный моменты.
Применяют ряд терминов связанных с понятием момента. Часть этих терминов относится к моменту создаваемому на валу (на роторе) электродвигателя. Другая группа терминов определяет моменты создаваемые механической нагрузкой подключенной к валу электрического двигателя.
Эти термины определяют как сам момент развиваемый двигателем, так и различные состояния момента на выходном валу двигателя. Под состоянием подразумевается значение момента в критических точках. Например, номинальный момент или пусковой момент.
Электромагнитный момент под которым понимают момент ротора двигателя возникающий при воздействии электромагнитного поля. Данный термин часто заменяют синонимами: вращающий момент или крутящий момент. На нашем сайте есть более полная статья про электромагнитный момент асинхронного двигателя. Пусковой момент - это значение момента в момент трогания ротора. Данный момент в литературе часто называют моментом трогания или начальным пусковым моментом электродвигателя. Более полную информацию можно получить в материале про пусковой момент асинхронника.
Номинальный момент - значение момента создаваемое электромагинитным полем на валу двигателя при номинальных параметрах двигателя и номинальных внешинх условиях. Дополнительные сведения про термин номинальный момент можно получить в статье про асинхронные двигатели и их номинальный момент.
Под критическим моментом понимают наивысшее или максимально возможное значение. В случае если момент нагрузки превысит величину критического момента, то двигатель остановится. Поэтому в литературе в качестве синонима встречается так же термин: максимальный вращающий момент электродвигателя переменного тока. Данный термин подробно рассмотрен в статье про критический момент асинхронного двигателя. Тормозной момент – момент, возникающий под действием электромагнитных сил на роторо асинхронного двигателя и противоположный по знаку вращающему моменту. Часто встречается в литературе термин синоним: тормозящий момент. Подробное обсуждение понятия тормозной момент асинхронного двигателя здесь. Момент нагрузки, называемый еще и момент сопротивления - параметр относящийся к механической системе подключенной к валу асинхронного двигателя. Здесь более полный анализ термина момент сопротивления.
Асинхронный двигатель с фазным ротором
Асинхронный двигатель с фазным ротором (рис. 1 и 2) применяют для привода таких машин и механизмов, которые пускаются в ход под нагрузкой (краны, лифты и пр.). В подобных приводах двигатель должен развивать при пуске максимальный момент, что достигается с помощью пускового реостата.
В двигателе с фазным ротором статор выполнен так же, как и в двигателе с короткозамкнутым ротором. На роторе расположена трехфазная обмотка, состоящая из трех, шести, девяти и т. д. катушек (в зависимости от числа полюсов машины), сдвинутых одна относительно другой на 120° (в двухполюсной машине), 60° (в четырехполюсной) и т. д. Числа полюсов обмоток статора и ротора берутся одинаковыми.
Рис. 1 - Электрическая схема асинхронного двигателя с фазным ротором (а) и его условное графическое изображение (б): 1 — статор; 2 — ротор; 3 — контактные кольца со щетками; 4 — пусковой реостат
Рис.
2 - Основные конструктивные узлы
асинхронного двигателя с фазным ротором:
1 — приспособление для подъема щеток;
2, 12 —- подшипниковые щиты; 3 — щеткодержатели;
4 — траверса; 5 — обмотка статора; 6 —
остов; 7 — сердечник статора; 8 — коробка
с выводами; 9 — сердечник ротора; 10 —
обмотка ротора; 11 — контактные кольца
Обмотку фазного ротора обычно соединяют «звездой». Концы ее присоединяют к трем контактным кольцам, к которым посредством щеток подключают трехфазный пусковой реостат, т. е. в каждую фазу ротора в момент пуска вводят дополнительное активное сопротивление.
Для уменьшения износа контактных колец и щеток двигатели с фазным ротором иногда снабжают приспособлениями 1 (см. рис. 2) для подъема щеток и замыкания колец накоротко после выключения реостата.
Асинхронный двигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.
Принцип работы асинхронных электродвигателей
Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле, угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p
Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, называемой синхронной. Отсюда и название двигателя асинхронный, т. е. несинхронный.
Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2: s=(ω1-ω2)/ω1.
Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.
При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.