
- •I Химическая термодинамика
- •1. Внутренняя энергия системы. Теплота и работа. Первое начало термодинамики. Закон Гесса. Тепловой эффект реакции.
- •2. Тепловые эффекты реакции. Зависимость cp от t. Зависимость δh от t. Уравнение Киргофа,анализ.
- •3. Второе начало термодинамики. Обратимые и необратимые процессы. Энтропия
- •2 Начало термодинамики.
- •Расчет изменения энтропии для различных процессов
- •4. Вычисление абсолютной энтропии. Постулат Планка
- •1.5.1 Расчет абсолютной энтропии
- •5.Равновесные и обратимые процессы. Изохорно-изотермический потернциал
- •6. Изобарно-изотермический потенциал
- •9. Зависимость константы равновесия от температуры.
- •8.Химическое равновесие .Константы.
- •10. Расчет константы химического равновесия через изобарный потенциал.
- •Законы Рауля
- •16.Вычисление массы паровой и жидкой фазы. Связь между составом жидкой и паровой фаз
- •17. Азеотропные растворы
- •18. Фракционная перегонка
- •19. Ограниченная взаимная растворимость жидкостей
- •21. Повышение температуры кипения (эбулиоскопия). Понижение(криоскопия)
- •23. Удельная электропроводность. Ее зависимость от концентрации электролита
- •24 Эквивалентная электропроводность
- •26 Кондуктометрическое титрование
- •27. Электродные потенциалы. Стандартный водородный электрод
- •[Править]Устройство
- •28 . Уравнение Нернста для электродного потенциала Вывод уравнения Нернста
- •29. Классификация электродов . Электроды 1го рода
- •30. Электроды 2го рода.
- •31. ОкИслительно-восстановительные электроды. Хингидронный электрод
- •32. Гальванический элемент. Элемент даниэля-якоби
- •Характеристики гальванических элементов
- •Применение
- •Гальванический элемент Даниэля-Якоби
- •33 Концентрационный элемент
- •34. Определение рН разными цепями
- •35 Электрохимическая коррозия
- •36. Основные понятия химической кинетики. Порядок и молекулярность реакций
- •2.1.11 Кинетика двусторонних (обратимых) реакций
- •40. Скорость химических реакции.Катализ.
9. Зависимость константы равновесия от температуры.
Обычно константа равновесия изменяется с изменением температуры. Если в ходе реакции выделяется тепло, то с повышением температуры реакция замедляется и K уменьшается. Напротив, когда тепло в ходе реакции поглощается, константа равновесия с повышением температуры увеличивается. Температурная зависимость константы равновесия выражается в виде
где Н – теплота химического процесса (т.е. теплота химической реакции, теплота растворения и т.д.).
Интегрирование от Т1 до Т2 дает
Отсюда, зная значение K при двух температурах, можно найтиН. Или, если известны Kр либо KС при одной температуре иН, можно определить Kр или KС при другой температуре.
лияние температуры.
Для
эндотермических реакций (
)
значение константы равновесия
возрастает
с повышением температуры, а для
экзотермической реакции (
)
– понижается (рис.1.)
Рис.1. Зависимость константы равновесия от температуры для обратимых реакций.
Из
уравнения (5) для реакции
зависимость
равновесной степени превращения
от
Т для эндо- и экзотермической реакций
имеет вид (рис.2.)
Рис.2. Зависимость равновесной степени превращения от температуры для обратимых реакций
Зная
зависимость
от
,
и используя кинетическую трактовку
равновесия
,
где
и
–
соответственно константа скорости
прямой и обратной реакций, по
значениям
и
при
двух различных температурах можно
восстановить кинетическое описание
процесса при различных
и
времени.
Направление смещения химического равновесия при изменениях концентрации реагирующих веществ, температуры и давления (в случае газовых реакций)определяется общим положением, известным под названием принципа подвижного равновесия или принципа Ле Шателье:
если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие (изменяется концентрация, температура, давление), то оно благоприятствует протеканию той из двух противоположных реакций, которая ослабляет воздействие.
Поясним это на примере реакции синтеза аммиака:
,
∆H =
-46,2 кДж/моль
2 объема 1 объем
Если внешнее воздействие выражается в увеличении концентрации азота или водорода, то оно благоприятствует реакции, вызывающей уменьшение концентрации этих веществ, и,следовательно, равновесие сместится в сторону образования аммиака. Соответственно увеличение концентрации аммиака смещает равновесие в сторону исходных веществ.
Поскольку прямая реакция, как видно из уравнения, протекает с выделением теплоты, повышение температуры смеси благоприятствует протеканию реакции с поглощением теплоты,и равновесие сместится в сторону исходных веществ; понижение температуры вызовет смещение равновесия в сторону продукта реакции.
Чтобы определить влияние давления на смещение равновесия, необходимо подсчитать число молекул в левой и правой частях уравнения.В приведенном примере в левой части уравнения содержится две молекулы, а в правой - одна. Поскольку увеличение давления должно благоприятствовать процессу,ведущему к уменьшению числа молекул, то в данном случае равновесие сместится в сторону продукта реакции. Очевидно, уменьшение давления сместит равновесие в сторону исходных веществ.
Если же в уравнении обратимой реакции число молекул в левой части равно числу молекул в правой части, например
N2 +
О2
2NO
то изменение давления не вызывает смещения химического равновесия.
Следует заметить, что все катализаторы одинаково ускоряют как прямую, так и обратную реакции и поэтому на смещение равновесия влияния не оказывают,а только способствуют более быстрому его достижению.