Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
I Химическая термодинамика.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.5 Mб
Скачать

6. Изобарно-изотермический потенциал

Энергия Гиббса  (изобарно-изотермический потенциал). Во многих случаях самопроизвольные процессы (процессы, происходящие без подвода энергии от внешнего источника) в природе протекают при наличии разности потенциалов, например, разность электрических потенциалов, обусловливает перенос заряда, а разность гравитационных потенциалов – падение тела. Эти процессы заканчиваются при достижении минимума потенциала. Движущей силой  химических процессов, протекающих при постоянных давлении  и температуре является   изобарно-изотермический потенциал, называемый в настоящее время  энергией Гиббса и обозначаемый G. Изменение энергии Гиббса в химическом процессе определяется соотношением

                                       ΔG = ΔH –TΔS,                                 (2.16)

где ΔG – изменение энергии Гиббса химического процесса; ΔH – изменение энтальпии химического процесса; ΔS – изменение энтропии химического процесса; Т – температура в Кельвинах.

                Уравнение (2.16) может быть представлено в следующем виде: ΔH = ΔG + TΔS.  (2.17)

                 Смысл уравнения (2.17) в том, что часть теплового эффекта реакции расходуется на совершение работы (ΔG), а часть рассеивается в окружающую среду (TΔS). 

                Энергия Гиббса является критерием принципиальной возможности самопроизвольного протекания реакции. Если в ходе реакции энергия Гиббса уменьшается, то процесс может протекать в данных условиях самопроизвольно  ΔG < 0. Процесс в данных условиях неосуществим, если ΔG > 0.  Реакция является обратимой, т.е. может протекать и в прямом и в обратном направлении, если  ΔG = 0 (термодинамическое условие химического равновесия).

Эти соотношения применимы также к фазовым равновесиям, т.е. случаям, когда в равновесии находятся две фазы (агрегатных состояния) одного и того же вещества, например, лед и жидкая вода.

Энтальпийный и энтропийный факторы. Процессы  могут протекать самопроизвольно (ΔG<0), если они сопровождаются уменьшением энтальпии (ΔH<0) и увеличением энтропии системы (ΔS>0). Если же энтальпия системы увеличивается (ΔH>0), а энтропия уменьшается (ΔS<0), то такой процесс протекать не может (ΔG>0).  При иных знаках ΔS и ΔН принципиальная возможность протекания процесса определяется соотношением энтальпийного (ΔH) и энтропийного (ТΔS) факторов.

Если  ΔН>0 и ΔS>0, т.е. энтальпийная составляющая противодействует, а энтропийная благоприятствует протеканию процесса, то реакция может протекать самопроизвольно за счет энтропийной составляющей, при условии, что |ΔH|<|TΔS|.

Если, энтальпийная составляющая благоприятствует, а энтропийная противодействует протеканию процесса, то реакция может протекать самопроизвольно за счет энтальпийной составляющей, при условии, что |ΔH|>|TΔS|.

Влияние температуры на направление реакции.  Изменение знака энергии Гиббса произойдет при

                                                                        (2.21)

Очевидно, что смена знака энергии Гиббса с изменением температуры возможна только в  двух случаях: 1) ΔН>0 и ΔS>0 и 2) ΔН<0 и ΔS<0.  

Стандартная энергия Гиббса образования  -     это изменение энергии Гиббса реакции образования 1 моль соединения из простых веществ, устойчивых при стандартных условиях. Энергия Гиббса образования простых веществ принимается равной нулю. Стандартные энергии Гиббса образования веществ можно найти в соответствующих справочниках.

Энергия Гиббса химической реакции. Энергия Гиббса является функцией состояния, т.е. ее изменение в процессе не зависит от пути его протекания, а определяется исходным и конечным состоянием системы.  Следовательно, энергию Гиббса химической реакции (2.10) можно рассчитать по формуле

  

                Если условия отличаются от стандартных, то для нахождения   ΔrG может быть использовано уравнение изотермы Вант-Гоффа, которое для реакции   (2.11)  между газами записывается  как

                   

а между растворенными веществами  -                (2.24)

где    _ относительные  парциальные давления соответствующих веществ; сА, сВ, сD, c _ концентрации соответствующих растворенных веществ, а, b, c, d – соответствующие стехиометрические коэффициенты.

                Если реагирующие вещества находятся в стандартном состоянии, то уравнения (2.23) и (2.24) превращаются в

7.Изобарный потенциал идеального газа. Химический потенциал

Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; это термодинамический потенциал следующего вида:

Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)

Понятие энергии Гиббса широко используется в термодинамике и химии.

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж)

Классическим определением энергии Гиббса является выражение

где   — внутренняя энергия  — давление  — объём  — абсолютная температура  — энтропия.

Дифференциал энергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных — через давление p и температуру T:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь   — химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

правитьСвязь с термодинамической устойчивостью системы

Покажем, что минимум потенциала Гиббса соответствует устойчивому равновесию термодинамической системы с фиксированными температурой, давлением и числом частиц.

Запишем обобщённое уравнение первого и второго начал термодинамики:

При  .

Таким образом в системе при постоянных температуре и давлении энергия Гиббса достигает минимального значения.

Связь с химическим потенциалом

Используя свойства экстенсивности термодинамических потенциалов, математическим следствием которых является соотношение Гиббса-Дюгема, можно показать, что химический потенциал для системы с одним типом частиц есть отношение энергии Гиббса к числу частиц в системе:

Если система состоит из частиц нескольких сортов   с числом   частиц каждого сорта, то соотношения Гиббса-Дюгема приводят к выражению

Химический потенциал применяется при анализе систем с переменным числом частиц, а также при изучении фазовых переходов. Так, исходя из соотношений Гиббса-Дюгема и из условий равенства химических потенциалов   находящихся в равновесии друг с другом фаз, можно получить уравнение Клапейрона-Клаузиуса, определяющее линию сосуществования двух фаз в координатах   через термодинамические параметры (удельные объёмы) фаз и теплоту перехода между фазами.

[править]Энергия Гиббса и направление протекания реакции

В химических процессах одновременно действуют два противоположных фактора — энтропийный ( ) и энтальпийный ( ). Суммарный эффект этих противоположных факторов в процессах, протекающих при постоянном давлении и температуре, определяет изменение энергии Гиббса ( ):

Из этого выражения следует, что  , то есть некоторое количество теплоты расходуется на увеличение энтропии ( ), эта часть энергии потеряна для совершения полезной работы, её часто называют связанной энергией. Другая часть теплоты ( ) может быть использована для совершения работы, поэтому энергию Гиббса часто называют также свободной энергией.

Характер изменения энергии Гиббса позволяет судить о принципиальной возможности осуществления процесса. При   процесс может протекать, при   процесс протекать не может (иными словами, если энергия Гиббса в исходном состоянии системы больше, чем в конечном, то процесс принципиально может протекать, если наоборот — то не может). Если же  , то система находится в состоянии химического равновесия.

Обратите внимание, что речь идёт исключительно о принципиальной возможности протекания реакции. В реальных же условиях реакция может не начинаться и при соблюдении неравенства   (по кинетическим причинам).

Существует полезное соотношение, связывающее изменение свободной энергии Гиббса   в ходе химической реакции с её константой равновесия  :

Вообще говоря, любая реакция может быть рассмотрена как обратимая (даже если на практике она таковой не является). При этом константа равновесия определяется как

где   — константа скорости прямой реакции,   — константа скорости обратной реакции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]