
- •I Химическая термодинамика
- •1. Внутренняя энергия системы. Теплота и работа. Первое начало термодинамики. Закон Гесса. Тепловой эффект реакции.
- •2. Тепловые эффекты реакции. Зависимость cp от t. Зависимость δh от t. Уравнение Киргофа,анализ.
- •3. Второе начало термодинамики. Обратимые и необратимые процессы. Энтропия
- •2 Начало термодинамики.
- •Расчет изменения энтропии для различных процессов
- •4. Вычисление абсолютной энтропии. Постулат Планка
- •1.5.1 Расчет абсолютной энтропии
- •5.Равновесные и обратимые процессы. Изохорно-изотермический потернциал
- •6. Изобарно-изотермический потенциал
- •9. Зависимость константы равновесия от температуры.
- •8.Химическое равновесие .Константы.
- •10. Расчет константы химического равновесия через изобарный потенциал.
- •Законы Рауля
- •16.Вычисление массы паровой и жидкой фазы. Связь между составом жидкой и паровой фаз
- •17. Азеотропные растворы
- •18. Фракционная перегонка
- •19. Ограниченная взаимная растворимость жидкостей
- •21. Повышение температуры кипения (эбулиоскопия). Понижение(криоскопия)
- •23. Удельная электропроводность. Ее зависимость от концентрации электролита
- •24 Эквивалентная электропроводность
- •26 Кондуктометрическое титрование
- •27. Электродные потенциалы. Стандартный водородный электрод
- •[Править]Устройство
- •28 . Уравнение Нернста для электродного потенциала Вывод уравнения Нернста
- •29. Классификация электродов . Электроды 1го рода
- •30. Электроды 2го рода.
- •31. ОкИслительно-восстановительные электроды. Хингидронный электрод
- •32. Гальванический элемент. Элемент даниэля-якоби
- •Характеристики гальванических элементов
- •Применение
- •Гальванический элемент Даниэля-Якоби
- •33 Концентрационный элемент
- •34. Определение рН разными цепями
- •35 Электрохимическая коррозия
- •36. Основные понятия химической кинетики. Порядок и молекулярность реакций
- •2.1.11 Кинетика двусторонних (обратимых) реакций
- •40. Скорость химических реакции.Катализ.
18. Фракционная перегонка
Фракционная перегонка.
Под термином фракционная перегонка условимся понимать последовательное многократное повторение процесса испарения и конденсации.
И будем отличать ее от ректификации - непрерывного многократного повторения процесса испарения и конденсации.
Принцип метода
Фракционная перегонка служит для разделения однородной смеси жидкостей, кипящих при различной температуре и не образующих друг с другом постоянно кипящих смесей. В основе всякой дробной перегонки лежит закон фазового равновесия в системе жидкость—пар, открытый Д. П. Коноваловым: «пар обогащен тем компонентом, прибавление которого к жидкости понижает ее температуру кипения» (т.е. более лекгокипящим).
Из
диаграммы фазового равновесия видно
что, паровая фаза при любой температуре
кипения содержит большее количество
низкокипящего компонента, чем жидкая
фаза; при этом каждой температуре кипения
соответствуют строго определенные
составы жидкости и пара. Таким образом,
пар, образующийся из кипящей бинарной
смеси, всегда содержит оба компонента,
но обогащен более летучим из них (состав
M1).
При полной конденсации такого пара
получается жидкость с тем же составом,
что и пар. При вторичной перегонке этой
жидкости образуется пар (состав M2),
еще более обогащенный легкокипящим
компонентом. Следовательно, в результате
многократного повторения условий
фазового равновесия (перегонки) для
каждой первой фракции можно в конечном
счете получить в первой фракции от
последней перегонки низкокипящнй
компонент смеси, не содержащий другого
компонента. Соответственно, последняя
фракция будет состоять из чистого
высококипящего компонента первоначальной
смеси. В этом по существу и заключается
принцип разделения дробной перегонки.
Проведение фракционной перегонки.
Исходную смесь перегоняют, собирая несколько фракций либо в заранее намеченных температурных интервалах, либо в температурных интервалах, определяемых изменениями скорости перегонки. Затем подвергают перегонке первую фракцию, от которой в свою очередь отгоняют одну или две фракции; перегонку ведут до тех пор, пока температура паров не достигнет верхнего предела, наблюдавшегося при первоначальной перегонке этой фракции. К остатку прибавляют вторую фракцию и продолжают перегонку таким образом до конца. Так повторяют несколько раз, собирая фракции в первоначальных температурных интервалах или же сужая пределы кипения основных фракций.
Рис.2 Установка для фракционной перегонки 1 - термометр 2 - дефлегматор 3 - холодильник 4 - алонж 5 - приемник 6 - перегонная колба 7 - капилляры 8 - нагреватель
Для увеличения эффективности разделения смеси и, следовательно, для уменьшения числа перегонок следует пользоваться дефлегматорами. Действие дефлегматоров состоит в том, что в них при неполном охлаждении пара кипящего раствора происходит частичная конденсация пара более высококипящей жидкости. Образовавшийся промежуточный конденсат называют флегмой (от греч. phlegma - слизь, мокрота). Флегма стекает обратно в колбу 6 (рис.2), а пар обогащается компонентом с более низкой температурой кипения и попадает в холодильник 3, где подвергается уже полной конденсации. вследствие охлаждения происходит частичная конденсация пара и температура его понижается. Как видно из диаграммы кипения, при понижении температуры пара от t1 до t2содержание низкокипящего компонента возрастает от M1 до M2.
В лабораториях применяют дефлегматоры самых различных конструкций. Некоторые из них изображены на рис.3.
Рис.3 Дефлегматоры различных конструкций. а,б - шариковые, в - елочные, г - с насадкой, д - Арбузова, е - Ганна
Часто применяемые в лабораториях шариковые дефлегматоры (рис.3 а и б) наименее эффективны; если же на дно каждого шарика такого дефлегматора не помещать ни металлической сетки, ни стеклянного шарика, то эффективность их становится такой же малой, как у пустой цилиндрической стеклянной трубки.
Из других типов дефлегматоров без насадки более эффективны дефлегматоры Арбузова (рис. 3д) и Гана (рис. 3е); в пюследнем охлаждающей поверхностью является поверхность внутренней трубки, содержащей жидкость, кипящую при температуре, средней между температурами кипения обоих компонентов смеси. Лучшие результаты дают дефлегматоры с насадками (рис. 3г); к этим дефлегматорам следует отнести и елочный дефлегматор (рис. 3в).
Нередко дробную перегонку лучше проводить при уменьшенном давлении, особенно в тех случаях, когда компоненты смеси имеют близкие температуры кипения, но относятся к разным группам органических соединений, например к спиртам и углеводородам. Различие в температурах кипения таких веществ в вакууме может быть значительно большим, чем при атмосферном давлении, и разделение такой смеси будет соответственно легче.