Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
material.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
57.11 Кб
Скачать

Деформируемые сплавы, не упрочняемые термообработкой

Прочность алюминия можно повысить легированием. В сплавы, не упрочняемые термической обработкой, вводят марганец или магний. Атомы этих элементов существенно повышают его прочность, снижая пластичность. Обозначаются сплавы: с марганцем – АМц, с магнием – АМг; после обозначения элемента указывается его содержание (АМг3). Магний действует только как упрочнитель, марганец упрочняет и повышает коррозионную стойкость.

Прочность сплавов повышается только в результате деформации в холодном состоянии. Чем больше степень деформации, тем значительнее растет прочность и снижается пластичность. В зависимости от степени упрочнения различают сплавы нагартованные и полунагартованные (АМг3П).

Эти сплавы применяют для изготовления различных сварных емкостей для горючего, азотной и других кислот, мало- и средненагруженных конструкций.

Деформируемые сплавы, упрочняемые термообработкой

К таким сплавам относятся дуралюмины ( сложные сплавы систем алюминий–медь–магний или алюминий–медь–магний–цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводится марганец.

Дюралюмины обычно подвергаются закалке с температуры 500oС и естественному старению, которому предшествует двух-, трехчасовой инкубационный период. Максимальная прочность достигается через 4…5 суток.

Широкое применение дюралюмины находят в авиастроении, автомобилестроении, строительстве.

Высокопрочными стареющими сплавами являются сплавы, которые кроме меди и магния содержат цинк. Сплавы В95, В96 имеют предел прочности около 650 МПа. Основной потребитель – авиастроение (обшивка, стрингеры, лонжероны).

Ковочные алюминиевые сплавы АК:, АК8 применяются для изготовления поковок. Поковки изготавливаются при температуре 380…450oС, подвергаются закалке от температуры 500…560oС и старению при 150…165oС в течение 6…15 часов.

В состав алюминиевых сплавов дополнительно вводят никель, железо, титан, которые повышают температуру рекристаллизации и жаропрочность до 300oС.

Изготавливают поршни, лопатки и диски осевых компрессоров, турбореактивных двигателей.

Литейные алюминиевые сплавы

К литейным сплавам относятся сплавы системы алюминий–кремний (силумины), содержащие 10…13 % кремния.

Присадка к силуминам магния, меди содействует эффекту упрочнения литейных сплавов при старении. Титан и цирконий измельчают зерно. Марганец повышает антикоррозионные свойства. Никель и железо повышают жаропрочность.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют для изготовления литых деталей приборов и других средне- и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

25. Антифрикционные материалы (пористость 15…30 %), широко применяющиеся для изготовления подшипников скольжения, представляют собой пористую основу, пропитанную маслом. Масло поступает из пор на поверхность, и подшипник становится самосмазывающимся, не требуется подводить смазку извне. Это существенно для чистых производств (пищевая, фармацевтическая отрасли). Такие подшипники почти не изнашивают поверхность вала, шум в 3…4 раза меньше, чем от шариковых подшипников.

Подшипники работают при скоростях трения до 6 м/с при нагрузках до 600 МПа. При меньших нагрузках скорости скольжения могут достигать 20…30 м/с. Коэффициент трения подшипников – 0,04…0,06.

Разработаны подшипниковые спеченные материалы на основе тугоплавких соединений (боридов, карбидов и др.), содержащие в качестве твердой смазки сульфиды, селениды и гексагональный нитрид бора. Подшипники могут работать в условиях вакуума и при температурах до 500oС.

Для изготовления используются бронзовые или железные порошки с добавлением графита (1…3 %). Применяют металлопластмассовые антифрикционные материалы: спеченные бронзографиты, титан, нержавеющие стали пропитывют фторопластом. Получаются коррозионностойкие и износостойкие изделия. Срок службы металлопластмассовых материалов вдвое больше, чем материалов других типов.

26. Различают конструкционные порошковые материалы общего назначения, заменяющие обычные углеродистые и легированные стали, чугуны и цветные металлы, и материалы, обладающие специальными свойствами – высокой износостойкостью, твердостью, жаропрочностью, коррозионной стойкостью, специфическими магнитными и электрическими характеристиками. В зависимости от условий нагружения различают мало-, средне- и тяжелонагруженные детали, которые в свою очередь делятся на тяжелонагруженные статическими и динамическими усилиями.

Чем выше требования по прочности, тем меньше должна быть пористость металла. Порошковые детали делятся на четыре группы по плотности (пористости). Тяжелонагруженные статическими усилиями детали изготовляют из порошков углеродистых или легированных сталей и цветных сплавов. Пористость материала не должна превышать 9 %. Изделия получают холодным прессованием и спеканием с последующей дополнительной горячей и холодной штамповкой или горячим прессованием. Применяют также пропитку легкоплавкими металлическими расплавами с последующей термической обработкой.

Тяжелонагруженные динамическими нагрузками детали изготавливают из порошков углеродистых и легированных сталей и сплавов цветных металлов с пористостью не более 2 %. В этом случае проводят холодное прессование, спекание, горячую штамповку, горячее прессование или химико-термическую обработку.

С увеличением плотности одновременно возрастают пластичность и ударная вязкость. Изменяя пористость, можно регулировать плотность и механические свойства, подбирать материалы с заданным уровнем свойств для конкретных условий работы изделий.

Порошковые стали по механическим свойствам могут не уступать литым и кованым сталям соответствующего состава. Так мартенситно-стареющие стали, благодаря возможности повышения содержания титана до 2 – 3 % имеют до 2000 МПа при KCU от 30 до 40 Дж/см2.

Основой для получения порошковых коррозионностойких материалов обычно служат порошки сталей и сплавов определенного состава.

Перспективно использование порошков титана и его сплавов для изготовления тяжелонагруженных деталей. Высокие механические свойства порошковых изделий на основе титана ( = 650 – 900 МПа, = 8 – 16%) позволили применить их для изготовления шатунов автомобильных двигателей. Это позволило существенно уменьшить массу, снизить инерционные силы и повысить мощность двигателя. Из порошков титана организовано серийное производство таких деталей, как втулки, крышки, трубы для химического и пищевого машиностроения, приборостроения и др.

28 Аморфные металлы (металлические стёкла) — класс металлических твердых тел с аморфной структурой, характеризующейся отсутствием дальнего порядка и наличием ближнего порядка в расположении атомов. В отличие от металлов с кристаллической структурой, аморфные металлы характеризуются фазовой однородностью, их атомная структура аналогична атомной структуре переохлаждённых расплавов.

Аморфные сплавы подразделяются на 2 основных типа: металл-металлоид и металл-металл.

При аморфизации методом закалки из жидкого состояния могут быть получены сплавы, содержащие следующие элементы:

  • Для типа металл-металлоид: B, C, Si, Al, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ge, As, Zr, Nb, Mo, Rh, Pd, Ag, Sn, Te, Hf, Ta, W, Ir, Pt, Au, Tl, La.

  • Для типа металл-металл: Be, Mg, Al, Ca, Ti, V, Fe, Co, Ni, Cu, Zn, Ga, Sr, Y, Zr, Nb, Rh, Pd, Ag, Sb, Hf, Ta, Re, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho, Er, Lu, Th, U.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]