
- •А. Аппаратное обеспечение компьютеров
- •1. Раздел "Основы теории компьютеров"
- •2. Минимизация булевых функций с помощью диаграмм Вейча.
- •3. Определение и применение базиса при построении произвольных функций алгебры-логики.
- •4. Сложение и вычитание чисел с фиксированной запятой.
- •5. Умножение чисел с плавающей запятой.
- •6. Форматы команд.
- •7. Схема выполнения машинной двухадресной команды типа "Регистр-память" на однопроцессорном компьютере.
- •8. Схема выполнения машинной двухадресной команды типа "Регистр-регистр" на однопроцессорном компьютере.
- •2. Раздел "Архитектура вычислительных систем"
- •1. Архитектура кэш-памяти. Ассоциативное распределение информации в кэш-памяти.
- •2. Архитектура кэш-памяти. Прямое распределение (отображение) информации в кэш-памяти.
- •3. Архитектура векторного блока супер-ЭВМ CYBER-205. Особенности её конвейеров, обеспечивающие механизм "зацепления команд".
- •4. Векторные процессоры: структура аппаратных средств.
- •5. Пять основных архитектур высокопроизводительных ВС, их краткая характеристика, примеры.
- •6. SMP архитектура. Достоинства и недостатки. Область применения, примеры ВС на SMP.
- •7. MPP архитектура. История развития. Основные принципы. Концепция, архитектура и характеристики суперкомпьютера Intel Paragon.
- •8. Кластерная архитектура. Проблема масштабируемости. Примеры.
- •10. Понятие конвейера. "Жадная" стратегия. Понятие MAL в теории конвейера.
- •3. Раздел "Схемотехника ЭВМ"
- •1. Этапы проектирования комбинационных схем на примере дешифратора на 4 выхода: определение, таблица истинности, функция, логическая схема. Увеличение разрядности до 16-ти выходов.
- •2. Этапы проектирования комбинационных схем на примере мультиплексора 4-1: определение, таблица истинности, функция, логическая схема. Увеличение разрядности до 16-1.
- •3. Этапы проектирования комбинационных схем на примере схем сравнения двухразрядных слов: определение, таблица истинности, функция, логическая схема. Схема сравнения четырёхразрядных слов на элементах "Исключающее ИЛИ".
- •6. Синтез многовыходных комбинационных схем. Этапы проектирования в базисе И-НЕ.
- •7. Триггерные схемы: определение, классификация, условные графические обозначения, динамические параметры. Обобщённая структура двухступенчатого триггера, диаграмма его работы, условное графическое обозначение, динамические параметры.
- •8. Синтез двухступенчатого триггера по заданной таблице внешних переходов: таблица истинности, минимизация, схема. Построить временную диаграмму для двух переключений триггера, определить максимальные задержки переключений.
- •9. Счётчики: определение, модуль счётчика, динамические параметры. Примеры суммирующего, вычитающего и реверсивного счётчиков: схемы, временные диаграммы.
- •10. Счётчики: определение, модуль счётчика. Организация цепей переноса: схемы, динамические параметры. (CP)
- •11. Синтез синхронных счётчиков с заданным модулем на заданном типе триггера (DV, JK).
- •Б. Программное обеспечение компьютеров
- •4. Раздел "Алгоритмы и структура данных"
- •1. Понятие логических структур данных. Отображение структуры данных в памяти вектором и списком. Типы списков. Определение, основные операции; особенности их реализации.
- •2. Стек и очередь: определение, основные операции. Особенности выполнений операций при реализации стека и очереди вектором.
- •3. Стек и очередь: определение, основные операции. Особенности выполнения операций при реализации стека и очереди списком.
- •4. Просматриваемая динамическая таблица-вектор: определение, основные операции, особенности их реализации.
- •5. Просматриваемая динамическая таблица-список: определение, основные операции, особенности их реализации.
- •6. Упорядоченная таблица-вектор: определение, основные операции, особенности их реализации.
- •7. Таблица произвольного доступа: определение, основные операции, отображение в памяти. Функция рандомизации, её назначение.
- •9. Перемешанная таблица, использующая перемешивание сложением: определение, основные операции, особенности их реализации.
- •10. Перемешанная таблица, использующая перемешивание сцеплением: определение, основные операции, особенности их реализации.
- •5. Раздел "Базы данных"
- •1. Системы с базами данных. Понятие системы управления базами данных СУБД. Функции СУБД.
- •2. Понятие независимости от данных. Трёхуровневая архитектура ANSI-SPARC. Сравнительная характеристика уровней.
- •3. Модель данных. Назначение моделей данных. Компоненты моделей данных. Классификация моделей данных.
- •5. База данных реляционного типа. Основные понятия и структура реляционной модели. Реляционные языки. Основные правила целостности реляционной модели.
- •6. Реляционная алгебра. Основные операции реляционной алгебры.
- •7. Язык SQL. Операторы определения и манипулирования данными. Выборка данных из таблиц.
- •8. Модель данных "сущность-связь". Основные концепции и способы их представления на диаграммах. Современные методологии построения моделей "сущность-связь".
- •9. Нормализация отношений. Цель нормализации. Приведение к нормальным формам.
- •10. Жизненный цикл приложения баз данных. Основные фазы проектирования базы данных.
- •6. Раздел "Операционные системы"
- •1. Файловые системы современных операционных систем. Интерфейс пользователя для работы с файловой системой.
- •2. Принцип защиты данных в операционных системах. Управление правами доступа к файлам.
- •3. Способы группирования команд в операционных системах. Командные файлы. Программные каналы, конвейеры команд.
- •4. Обзор возможностей командных процессоров (оболочек) операционных систем.
- •5. Принципы организации многозадачного режима в операционных системах.
- •6. Коммуникационные средства многопользовательских операционных систем.
- •7. Генерация, конфигурирование, настройка операционной системы на потребности конкретного пользователя.
- •8. Средства и способы обеспечения многопользовательского режима в операционных системах.
- •9. Понятие процесса. Управление процессами в операционной системе UNIX.
- •10. Понятие программного канала. Средства управления программными каналами.

указывается условный или безусловный переход. Её условия перехода сравниваются с признаками, поступающими в БМК (блок микрокоманд) из РП (регистра признаков).
4.Если условия перехода выполняется, то осуществляется переход. В зависимости от того, дальний или короткий переход указан в коде операции, изменяется содержимое счётчика команд (СК). Если длинный переход, то в счётчик команд записывается адресу перехода, который формируется в БФИА (блок формирования исполнительного адреса). Для этого с выхода БФИА (блок формирования исполнительного адреса) передаётся в СК (счётчик команд). В случае короткого перехода, к счётчику команд прибавляется значение операнда команды. Команды условного перехода используют только короткий переход (?).
5.Если условие перехода не выполняется, то осуществляется переход к следующей команде. При этом к содержимому СК (счётчика команд) прибавляется величина К
(+К) - длина команды в байтах, и тем самым форм ируется адрес следующей команды.
(схема может быть неверной)
2. Раздел "Архитектура вычислительных систем"
Литература:
1. 681.3 К73 Коути П.М. Архитектура конвейерных ЭВМ. М.: Мир, 1993
2.

1. Архитектура кэш-памяти. Ассоциативное распределение информации в кэш-памяти.
("Архитектура ВС", Лекция 11.12.2004)
Среднее время доступа в системе с кэш:
|
Tдоступа |
=Tобращения +(kпромахов •Tпотерь ) |
|
среднее |
|
|
êýø |
|
где: |
|
|
• |
Tобращения - время обращения; |
|
• |
kпромахов |
- коэффициент промахов, обычно меньше 10% (0 ≤ kпромахов ≤1); |
• |
Tпотерь |
- потеря времени при обращении к оперативной памяти. |
3 способа организации кэш:
1.Если каждый блок основной памяти имеет только одно фиксированное место, на
котором может поместиться в кэш, то такой кэш называется кэшем |
с прямым |
отображением. (см. вопрос 2) |
|
2.Если некоторый блок основной памяти располагается в любом месте кэша, то такой кэш называется полностью ассоциативным.
3.Если блок ОП может располагаться на ограниченном количестве мест в кэш, то такой кэш называется множественно-ассоциативным (частично-ассоциативный, n-канальный).
Полностью ассоциативный кэш:
Если некоторый блок основной памяти располагается в любомместе кэша, то такой кэш называется полностью ассоциативным.
При полностью ассоциативной организации памяти, память логически неделима. То есть первые 14 старших разрядов адреса полностью адресуют тэг.
При записи в кэш-память. Выбираем любой "свободный" адрес памяти данных в кэш, переписываем по нему данные. Номер ячейки кэш, в которую были записаны данные, записываются в ассоциативную память данных (причём в качестве тэга будет записан адрес блока).
При чтении из кэш-памяти. В ассоциативной памяти просматриваем все записи и сравниваем тэги с текущим значением (путём полного перебора). Если найдена запись с искомым тэгом, считываем номер адреса кэша данных, где хранится искомая информация. Если запись не найдена, ситуация кэш-промаха. В случае кэш-попадания, по полученному адресу из памяти данных считываем искомые данные.

Недостатки:
Ассоциативная память работает последовательно, поэтому ассоциативный кэш более медленный. Кроме того, ассоциативная память должна содержать в себе дополнительную информацию об адресах кэш-памяти данных. Эти дополнительные затраты делают ассоциативную кэш-память более дорогой.
Достоинства: Возможность одновременно держать в кэш-памяти соседние ячейки оперативной памяти (по сравнению с кэш-памятью с прямым отображением).
2. Архитектура кэш-памяти. Прямое распределение (отображение) информации в кэш-памяти.
("Архитектура ВС", Лекция 11.12.2004) (Способы организации кэш - см. вопрос 1)
Если каждый блок основной памяти имеет только одно фиксированное место, на котором может поместиться в кэш, то такой кэш называется кэшем с прямым отображением.
Кэш-память с прямым отображением состоит из памяти тегов и памяти данных. В идеале временные параметры и ёмкости у этих двух блоков совпадают. В соответствии с идеологией прямого отображения вся оперативная память делится на фиксированные области (количество областей совпадает с количеством адресов кэша), каждой из которых приписывается свой номер - индекс. Кроме того, вводится нумерация ячеек внутри блоков - каждой ячейке внутри блока присваивается свой тэг. При этом тэги ячеек в соседних блоках могут совпадать.
При записи в кэш ищем ячейку, адрес которой совпадает с индексом записываемой информации. После этого в память тэгов и память данных записываем соответственно тэг и данные, в соответствии с адресом оперативной памяти.
Чтение из кэша (см. рис). Пусть v (value) - данные, за которыми происходит обращение. Выбираем из переданного адреса индекс, и по этому индексу в теговой памяти находим предыдущее значение тэга. Далее, сравниваем предыдущее значение тэга с текущим значением, и если они совпадают, следовательно информацию в соответствующей

ячейки памяти данных можно считать достоверной. Если не совпадают - ситуация кэшпромаха.
Недостатки:
Все блоки, находящиеся в одной и той же строке (с од инаковым индексом) не могут находиться в кэше одновременно. В то время как операция чтения соседних ячеек памяти является довольно распространённой.
Достоинства:
Простота реализации.
3. Архитектура векторного блока супер-ЭВМ CYBER-205. Особенности её конвейеров, обеспечивающие механизм "зацепления команд".
("Архитектура ВС", Лекция 02.12.2004)
Общая структура CYBER-205:
Архитектура векторного блока:

Особенностью векторного блока является реализация механизма зацепления команд. Этот механизм используется в том случае, если вновь вычисленный операнд (результат предыдущей операции) является аргументом для операции следующей:
A = B +C
D = A + E
В общем случае мы получаем, что полученные данные прогоняются через буферную память, затем по соответствующим каналам записываются в память. Затем через несколько тактов эти же данные читаем из памяти, прогоняем по всем каналам в векторный блок и предоставляем в качестве операнда. На этих пересылках теряется очень много времени. Для того, чтобы этого избежать, созданы аппаратно-программные средства, обобщённо называемые "механизмом зацепления команд".
Каждый из 4-х процессоров представляет собой коммутатор ("обменник") и 5 исполнительный конвейеров:
Этот блок работает следующим образом: результаты выполнения команды из конвейеров попадают опять в коммутатор. Таким образом, есть возможность подачи результатов на другой конвейер - минуя процедуру записи в оперативную память. Более того - при необходимости можно задержать данные на несколько тактов с помощью устройства задержки. Для реализации этого механизма (на уровне векторных команд), в Cyber-205 было создано:
1.На уровне архитектуры: