
- •Л 5 Основы теории четырёхполюсников
- •3.1. Шесть форм записи уравнений четырехполюсников
- •3.2. Определение коэффициентов четырехполюсника
- •3.3. Зависимости между параметрами четырехполюсника
- •3.4. Т и п – схемы замещения пассивного четырехполюсника
- •3.5. Применение различных форм записи уравнений четырехполюсника. Соединение четырехполюсников. Условия регулярности.
- •3.6. Входное сопротивление четырехполюсника при произвольной нагрузке
- •3.7. Характеристические параметры четырехполюсника
- •3.8. Передаточная функция
- •3.9. Обратная связь
- •3.10. Частотные электрические фильтры. (э.Ф.)
- •3.10.1. Низкочастотные фильтры
- •3.10.2 Высокочастотные фильтры (фвч)
- •3.10.3. Полосно-пропускающие фильтры (ппф)
- •3.10.4.Полосно-заграждающие фильтры (пзф)
- •3.10.5. Rc- фильтры
- •3.11. Вопросы и задачи для самопроверки
Л 5 Основы теории четырёхполюсников
Исследование режима работы электрических цепей часто сводится к установлению связи между токами и напряжениями двух ветвей электрической цепи. Так как каждая ветвь присоединяется к остальной части цепи в двух точках, то выделяется часть цепи с четырьмя зажимами, причем к одной паре зажимов (входной) обычно присоединяется источник, а к другой (выходной) нагрузка.
Часть электрической цепи произвольной конфигурации, имеющая две пары зажимов для присоединения к источнику и приемнику называется четырехполюсником. Четырехполюсники делятся на активные и пассивные. Четырехполюсники не содержащие в своих ветвях источников энергии, называются пассивными. К ним относятся линии передачи. Четырехполюсники, содержащие в своих ветвях источник энергии называются активным.
Четырехполюсники бывают симметричными и взаимными.
Симметричный четырехполюсник – тот, в котором перемена местами его входных и выходных зажимов не изменяет входных и выходных токов и напряжений.
Взаимные (обратимые) четырехполюсники это – четырехполюсники, для которых справедлива теорема взаимности.
Симметричные и пассивные линейные четырехполюсники всегда взаимны (обратимы). Несимметричные активные четырехполюсники невзаимны (необратимы). Четырехполюсники на электрических схемах обозначаются следующим образом:
Если четырехполюсники – активные, то внутри прямоугольника ставится буква А.
Зажимы mn обычно присоединяются к источнику (входные), pq – к нагрузке – выходные (рис. 3.1).
Рис.3.1 направление токов при различных формах записи уравнений четырёхполюсников
3.1. Шесть форм записи уравнений четырехполюсников
Число сочетаний из четырех по два (U1,U2,I1,I2) равно шести, поэтому возможны следующие шесть форм записи:
А – форма:
.
Y – форма:
.
Z – форма:
.
H – форма:
.
G – форма:
.
В – форма:
.
Исторически сложилось так, что для А-формы направление токов и напряжений соответствует рис.3.1,а - для Y и Z- формы; Н и G- формы – рис.3.1,б; для В- формы рис.3.1,в.
Для изучения теории и исследование режимов четырехполюсников, выведем уравнение А-формы записи четырехполюсников.
Напряжение на нагрузке U2=I2Z2 (рис.3.2).
Рис.3.2. Схема четырёхполюсника с нагрузкой
На основании теоремы о компенсации Z2 можно заменить на E2=I2Z2 (Е2 – направлена против тока (рис.3.3))
Рис.3.3. Замена сопротивления нагрузки на Э.Д.С.
По принципу наложения:
(3.1)
В этих уравнениях взято «-Е2», так как оно направлено против токов, созданных Е1. Напряжение U1=E1, U2=E2, тогда в (3.1):
(3.2)
Из уравнений (3.2):
(3.3)
или:
(3.4)
Коэффициенты четырехполюсника (взаимного) связаны соотношением:
.
Их значения зависят только от величин сопротивлений и конфигурации четырехполюсника.
Если в схеме рис.3.2 поменять местами источник и нагрузку, и изменить положительные направления токов I1 и I2 (рис.3.4), то уравнение (3.4) примет
Рис.3.4. Схема четырёхполюсника при изменении мест включения источника и нагрузки
вид:
(3.5)
Из уравнения (3.5) с учетом, что AD – BC=1 получим:
(3.6)
Сравнивая (3.4) и (3.6) легко заметить, что при замене первичных зажимов вторичными коэффициенты А и D меняются местами.
Уравнение симметричного четырехполюсника должно в данном случае остаться неизменным. Поэтому у симметричного четырехполюсника A=D. Все четырехполюсники не удовлетворяющие этому условию являются несимметричными.