- •1.Общие принципы построения сетей
- •2.Топология физических связей
- •3. Адресация узлов сети .Коммутация. Обобщенная задача коммутации.
- •4..Маршрутизация. Продвижение данных. Мультиплексирование и демультиплексирование.
- •5.Коммутация каналов и пакетов
- •6.Коммутация пакетов
- •7.Дейтаграммная передача
- •8. Сравнение сетей с коммутацией пакетов и каналов
- •9. Архитектура и стандартизация сетей. Протокол и стек протоколов. Общая характеристика модели osi.
- •10. Архитектура и стандартизация сетей. Физический уровень. Канальный уровень. Сетевой уровень.
- •11. Архитектура и стандартизация сетей. Транспортный уровень. Сеансовый уровень. Уровень представления. Прикладной уровень.
- •12. Понятие открытой системы.
- •13. Распределение протоколов по элементам сети
- •14. Структурированная кабельная система зданий
- •15. Примеры сетей. Классификация компьютерных сетей. Классификация компьютерных сетей в технологическом аспекте.
- •16. Примеры сетей. Сеть доступа. Магистральная сеть. Информационные центры. Сети операторов связи.
- •17.Персональные сети и технология Bluetooth.
- •18. Мост как предшественник и Функциональный аналог коммутатора.
- •19. Коммутаторы. Параллельная коммутация
- •20. Скоростные версии Ethernet
- •21.Особенности персональных сетей
- •22.Поиск и стыковка устройств Bluetooth
- •23.Стандартизация протоколов локальных сетей
- •24.Ethernet со скоростью 10 Мбит/с на разделяемой среде
- •25. Ethernet со скоростью 10Мбит/с на разделяемой среде. Доступ к среде и переда данных .
- •26. Технологии Token Ring и fddi
- •27. Беспроводные локальные сети ieee 802.11. Проблем и области применения беспроводных локальных сетей.
- •28. Беспроводные локальные сети ieee 802.11. Топология локальных сетей стандарта ieee 802.11.
- •29. Мост как предшественник и функциональный аналог коммутатора. Логическая структуризация сетей и мосты
- •30. Мост как предшественник и функциональный аналог коммутатора. Алгоритм прозрачного моста ieee 802.1d
- •31. Мост как предшественник и функциональный аналог коммутатора. Топологические ограничения при применении мостов в локальных сетях
- •32. Коммутаторы. Параллельная коммутация
- •33.Коммутаторы. Параллельная коммутация
- •34.Виртуальные локальные сети. Назначение виртуальных сетей
- •35. Создание виртуальных сетей на базе одного коммутатора. Создание виртуальных сетей на базе нескольких коммутаторов.
- •36. Стек протоколов tcp/ip
- •37Формат ip-адреса Классы ip Особые ip-адреса
- •3 8Формат ip-адреса Классы ip Особые ip-адреса Использование масок при ip-адресации
- •39. Порядок назначения ip-адресов. Назначение адресов автономной сети. Централизованное распределение адресов. Адресация и технология cidr
- •40. Типы адресов стека tcp/ip. Локальные адреса. Сетевые ip-адреса. Доменные имена
- •41.Отображение ip-адресов на локальные адреса. Протокол разрешения адресов.
- •42. Формат ip-пакета.
- •43. Схема ip-маршрутизации. Упрощенная схема маршрутизации. Таблицы маршрутизации конечных узлов.
- •44. Пример ip-маршрутизации без масок
- •45. Маршрутизация с использованием масок. Структуризация сети масками одинаковой длины
- •46. Маршрутизация с использованием масок. Перекрытие адресных пространств
- •47. Протоколы транспортного уровня tcp и udp. Порты и сокеты
- •48. Протоколы транспортного уровня tcp и udp. Протокол udp и udp-дейтаграммы
- •49. Протоколы транспортного уровня tcp и udp. Протокол tcp и tcp-сегменты
- •50. Протокол rip. Построение таблицы маршрутизации
- •51Система dns Плоские символьные имена
- •52. Протокол dhcp
- •53. Протокол icmp
- •54. Трансляция адресов и настройка очередей
- •55. Proxy-сервер.
6.Коммутация пакетов
Сети с коммутацией пакетов, так же как и сети с коммутацией каналов, состоят из коммутаторов, связанных физическими линиями связи. Однако передача данных в этих сетях происходит совершенно по-другому. Например, она может принять данные для передачи, не заботясь о резервировании линий связи на пути следования этих данных и не гарантируя требуемую пропускную способность. Сеть с коммутацией пакетов не создает заранее для своих абонентов отдельных, выделенных исключительно для них каналов связи. Данные могут задерживаться и даже теряться по пути следования.
Важнейшим принципом функционирования сетей с коммутацией пакетов является представление информации, передаваемой по сети, в виде структурно отделенных друг от друга порций данных, называемых пакетами.
Каждый пакет снабжен заголовком, в котором содержится адрес назначения и другая вспомогательная информация (длина поля данных, контрольная сумма и др.), используемая для доставки пакета адресату. Наличие адреса в каждом пакете является одним из важнейших особенностей техники коммутации пакетов, так как каждый пакет может быть обработан коммутатором независимо от других пакетов, составляющих сетевой трафик. Помимо заголовка у пакета может иметься еще одно дополнительное поле, размещаемое в конце пакета и поэтому называемое концевиком. В концевике обычно помещается контрольная сумма, которая позволяет проверить, была ли искажена информация при передаче через сеть или нет,
Пакеты поступают в сеть без предварительного резервирования линий связи и не с фиксированной заранее заданной скоростью, как это делается в сетях с коммутацией каналов, а в том темпе, в котором их генерирует источник. Предполагается, что сеть с коммутацией пакетов, в отличие от сети с коммутацией каналов, всегда готова принять пакет от конечного узла.
Как и в сетях с коммутацией каналов, в сетях с коммутацией пакетов для каждого из потоков вручную или автоматически определяется маршрут, фиксируемый в хранящихся на коммутаторах таблицах коммутации. Пакеты, попадая на коммутатор, обрабатываются и направляются по тому или иному маршруту на основании информации, содержащейся в их заголовках, а также в таблице коммутации (рис. 3.6).
Рис. 3.6. Передача данных по сети в виде пакетов
Пакеты, принадлежащие как одному и тому же, так и разным информационным потокам, при перемещении по сети могут «перемешиваться» между собой, образовывать очереди и «тормозить» друг друга. На пути пакетов могут встретиться линии связи, имеющие разную пропускную способность. В зависимости от времени суток может сильно меняться и степень загруженности линий связи, В таких условиях не исключены ситуации, когда пакеты, принадлежащими одному и тому же потоку, могут перемещаться по сети с разными скоростями и даже прийти к месту назначения не в том порядке, в котором они были отправлены.
Разделение данных на пакеты позволяет передавать неравномерный компьютерный трафик более эффективно, чем в сетях с коммутацией каналов. Это объясняется тем, что пульсации трафика от отдельных компьютеров носят случайный характер и распределяются во времени так, что их пики чаще всего не совпадают. Поэтому когда линия связи передает трафик большого количества конечных узлов, то в суммарном потоке пульсации сглаживаются, и пропускная способность линии используется более рационально, без длительных простоев. Это эффект иллюстрируется рис. 3.7, на котором показаны неравномерные потоки пакетов, поступающие от конечных узлов 3,4 и 10 в сети, изображенной на рис. 3.6.
Рис. 3.7. Сглаживание трафика в сетях с коммутацией пакетов
