
- •1.Общие принципы построения сетей
- •2.Топология физических связей
- •3. Адресация узлов сети .Коммутация. Обобщенная задача коммутации.
- •4..Маршрутизация. Продвижение данных. Мультиплексирование и демультиплексирование.
- •5.Коммутация каналов и пакетов
- •6.Коммутация пакетов
- •7.Дейтаграммная передача
- •8. Сравнение сетей с коммутацией пакетов и каналов
- •9. Архитектура и стандартизация сетей. Протокол и стек протоколов. Общая характеристика модели osi.
- •10. Архитектура и стандартизация сетей. Физический уровень. Канальный уровень. Сетевой уровень.
- •11. Архитектура и стандартизация сетей. Транспортный уровень. Сеансовый уровень. Уровень представления. Прикладной уровень.
- •12. Понятие открытой системы.
- •13. Распределение протоколов по элементам сети
- •14. Структурированная кабельная система зданий
- •15. Примеры сетей. Классификация компьютерных сетей. Классификация компьютерных сетей в технологическом аспекте.
- •16. Примеры сетей. Сеть доступа. Магистральная сеть. Информационные центры. Сети операторов связи.
- •17.Персональные сети и технология Bluetooth.
- •18. Мост как предшественник и Функциональный аналог коммутатора.
- •19. Коммутаторы. Параллельная коммутация
- •20. Скоростные версии Ethernet
- •21.Особенности персональных сетей
- •22.Поиск и стыковка устройств Bluetooth
- •23.Стандартизация протоколов локальных сетей
- •24.Ethernet со скоростью 10 Мбит/с на разделяемой среде
- •25. Ethernet со скоростью 10Мбит/с на разделяемой среде. Доступ к среде и переда данных .
- •26. Технологии Token Ring и fddi
- •27. Беспроводные локальные сети ieee 802.11. Проблем и области применения беспроводных локальных сетей.
- •28. Беспроводные локальные сети ieee 802.11. Топология локальных сетей стандарта ieee 802.11.
- •29. Мост как предшественник и функциональный аналог коммутатора. Логическая структуризация сетей и мосты
- •30. Мост как предшественник и функциональный аналог коммутатора. Алгоритм прозрачного моста ieee 802.1d
- •31. Мост как предшественник и функциональный аналог коммутатора. Топологические ограничения при применении мостов в локальных сетях
- •32. Коммутаторы. Параллельная коммутация
- •33.Коммутаторы. Параллельная коммутация
- •34.Виртуальные локальные сети. Назначение виртуальных сетей
- •35. Создание виртуальных сетей на базе одного коммутатора. Создание виртуальных сетей на базе нескольких коммутаторов.
- •36. Стек протоколов tcp/ip
- •37Формат ip-адреса Классы ip Особые ip-адреса
- •3 8Формат ip-адреса Классы ip Особые ip-адреса Использование масок при ip-адресации
- •39. Порядок назначения ip-адресов. Назначение адресов автономной сети. Централизованное распределение адресов. Адресация и технология cidr
- •40. Типы адресов стека tcp/ip. Локальные адреса. Сетевые ip-адреса. Доменные имена
- •41.Отображение ip-адресов на локальные адреса. Протокол разрешения адресов.
- •42. Формат ip-пакета.
- •43. Схема ip-маршрутизации. Упрощенная схема маршрутизации. Таблицы маршрутизации конечных узлов.
- •44. Пример ip-маршрутизации без масок
- •45. Маршрутизация с использованием масок. Структуризация сети масками одинаковой длины
- •46. Маршрутизация с использованием масок. Перекрытие адресных пространств
- •47. Протоколы транспортного уровня tcp и udp. Порты и сокеты
- •48. Протоколы транспортного уровня tcp и udp. Протокол udp и udp-дейтаграммы
- •49. Протоколы транспортного уровня tcp и udp. Протокол tcp и tcp-сегменты
- •50. Протокол rip. Построение таблицы маршрутизации
- •51Система dns Плоские символьные имена
- •52. Протокол dhcp
- •53. Протокол icmp
- •54. Трансляция адресов и настройка очередей
- •55. Proxy-сервер.
1.Общие принципы построения сетей
Главной целью объединения компьютеров в сеть - разделение ресурсов: пользователи , подключенные к сети, получают возможность доступа к ресурсам компьютеров сети, к таким как:
периферийные устройства (диски, принтеры).;
данные, хранящиеся в ОП или на внешних ЗУ;
вычислительная мощность.
Сетевые интерфейсы
Для связи устройств в них, прежде всего, должны быть предусмотрены внешние интерфейсы.
Интерфейс формально определенная логическая и/или физическая граница между взаимодействующими независимыми объектами. Интерфейс задает параметры, процедуры и характеристики взаимодействия объектов.
Разделяют физический и логический интерфейсы
Физический интерфейс (порт) — определяется набором электрических связей и характеристиками сигналов. Обычно он представляет собой разъем с набором контактов
Логический интерфейс ( протокол) — это набор информационных сообщений определенного формата, которыми обмениваются два устройства или две программы, а также набор правил, определяющих логику обмена этими сообщениями.
Интерфейс компьютер—компьютер позволяет двум компьютерам обмениваться информацией. С каждой стороны он реализуется парой:
аппаратным модулем ( сетевой адаптер, или сетевой интерф.карта)
драйвером сетевой интерфейсной карты — специальной программой, управляющей работой сетевой интерфейсной карты.
Интерфейс компьютер—периферийное устройство ( интерфейс компьютер—принтер), Этот интерфейс реализуется:
со стороны компьютера — интерфейсной картой и драйвером ПУ , подобным сетевой интерфейсной карте и ее драйверу;
со стороны ПУ — контроллером ПУ (принтера), обычно представляющий собой аппаратное устройство, принимающее от компьютера как данные, так и команды, которые он отрабатывает, управляя электромеханическими частями ПУ.
2.Топология физических связей
Объединяя в сеть несколько компьютеров, необходимо решить, каким образом соединить их друг с другом, выбрать топологию.
Под топологией сети понимается конфигурация графа, вершинам которого соответствуют конечные узлы сети (компьютеры) и коммуникационное оборудование (маршрутизаторы), а ребрам — физические или информационные связи между вершинами.
Можно соединять каждый компьютер с каждым или же связывать их последовательно, предполагая, что они будут общаться, передавая сообщения друг другу «транзитом». В качестве транзитного узла может выступать как универсальный компьютер, так и специализированное устройство.
От выбора топологии связей существенно зависят характеристики сети:
наличие м/у узлами неск. путей повышает надежность сети и делает возможным распределение нагрузки
простота присоединения новых узлов, свойственная некоторым топологиям, делает сеть легко расширяемой.
экономические соображения часто приводят к выбору топологий, для которых характерна минимальная суммарная длина линий связи.
Среди множества возможных конфигураций различают полносвязные и не полносвязные.
Полносвязная топология (рис. 2.10, а) соответствует сети, в которой каждый компьютер непосредственно связан со всеми остальными. Этот вариант оказывается громоздким и неэффективным. В таком случае каждый компьютер в сети должен иметь большое количество коммуникационных портов. Полносвязные топологии в крупных сетях применяются редко
Все другие варианты основаны на неполносвязных топологиях, когда для обмена данными между двумя компьютерами может потребоваться транзитная передача данных через другие узлы сети.
Кольцевая топология. Данные передаются по кольцу от одного компьютера к другому. Главным достоинством кольца является то, что оно по своей природе обеспечивает резервирование связей. Данные в кольце, сделав полный оборот, возвращаются к узлу-источнику. Поэтому источник может контролировать процесс доставки данных адресату. Это свойство используется для тестирования связности сети и поиска узла, работающего некорректно. В то же время в сетях с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какого-либо компьютера не прерывался канал связи между остальными узлами кольца.
Звездообразная топология образуется в случае, когда каждый компьютер подключается непосредственно к общему центральному устройству(концентратору). В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным комп. сети. В качестве концентратора может выступать как компьютер, так и спец. устройство. «-»: высокая стоимость сетевого оборудования из-за необходимости приобретения спец. центрального устройства; возможности по наращиванию количества узлов в сети ограничиваются количеством портов концентратора.
Иногда имеет смысл строить сеть с использованием нескольких концентраторов, иерархически соединенных между собой звездообразными связями. Получаемую в результате структуру называют иерархической звездой (дерево).Дерево является самой распространенной топологией связи.
Особым частным случаем звезды является общая шина. Здесь в качестве центрального элемента выступает пассивный кабель (такую же топологию имеют многие сети, использующие беспроводную связь — роль общей шины здесь играет общая радиосреда). Передаваемая информация распространяется по кабелю и доступна одновременно всем компьютерам, присоединенным к этому кабелю. «+»: дешевизна и простота присоединения новых узлов к сети, а «-» — низкая надежность (любой дефект кабеля полностью парализует всю сеть) и невысокая производительность (в каждый момент времени только один компьютер может передавать данные по сети).
Рис. 2.11. Смешанная топология
Небольшие сети имеют типовую топологию - звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией.