Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эконометрика 2часть,исправл..doc
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
2.83 Mб
Скачать
  1. Временные ряды в эконометрических исследованиях

Модели, построенные по данным, характеризующим объект за ряд последовательных моментов (периодов), называются моделями временных рядов.

Временной ряд – это совокупность значений какого либо показателя за несколько последовательных моментов или периодов.

Каждый уровень временного ряда формируется под воздействием трех компонент:

  • трендовой компоненты, характеризующей основную тенденцию уровней ряда (Т);

  • циклической компоненты, характеризующей циклические или периодические колебания изучаемого явления. Различают коньюктурную компоненту (К), связанную с большими экономическими циклами и сезонную компоненту (S), связанную с внутригодовыми колебаниями ряда;

  • случайной компоненты, которая является результатом воздействия множества случайных факторов (Е).

Модели, в которых временной ряд представлен как сумма перечисленных компонент, - аддитивные модели, как произведение – мультипликативные модели временного ряда.

Аддитивная модель имеет вид:

; (3.1)

мультипликативная модель: . (3.2)

Аддитивную модель применяют, когда амплитуда сезонных колебаний со временем не меняется. Если амплитуда сезонных колебаний со временем возрастает или уменьшается, то применяют мультипликативную модель.

  1. Выявление структуры временного ряда

Для выявления структуры ряда, т. е. состава компонент рассчитывают автокорреляцию уровней ряда.

Автокорреляция уровней ряда – это корреляционная зависимость между последовательными уровнями ряда.

Автокорреляция может быть измерена линейным коэффициентом корреляции ( ri ) между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени. Сдвиг во времени (лаг) определяет порядок коэффициента автокорреляции.

Различают коэффициент автокорреляции первого, второго, третьего и т. д. порядков. Коэффициент автокорреляции уровней временного ряда первого порядка рассчитывают при лаге 1:

, (3.3)

где - средний уровень исходного ряда, рассчитанный от t=2 до n; - средний уровень ряда, сдвинутого на один шаг, рассчитанный от t=2 до n.

Коэффициент автокорреляции уровней временного ряда второго порядка рассчитывают при лаге 2:

, (3.4)

где - средний уровень исходного ряда, рассчитанный от t=3 до n;

- средний уровень ряда, сдвинутого на два шага, рассчитанный от t=3 до n.

Обычно рекомендуют максимальный порядок коэффициента автокорреляции, равный n/4.

Рассчитав несколько коэффициентов автокорреляции можно определить лаг, при котором автокорреляция наиболее высокая, выявив тем самым структуру временного ряда.

Если наиболее высоким оказалось значение коэффициента автокорреляции первого порядка, то исследуемый временной ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , ряд содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений:

  • либо ряд не содержит тенденции и циклических колебаний, а его уровень определяется только случайной компонентой;

  • либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.

Рассмотрим пример: пусть имеются данные предприятия по объемам выпуска некоторого товара по кварталам за 3 года в тыс. шт. (табл.3.1).

Таблица 3.1. – Объем выпуска товара, тыс. шт.

t

Yt

Yt-1

( )*

( )

( )2

( )2

Yt-2

( )*

( )

( )2

( )2

1

410

-

-

-

-

-

-

-

-

-

-

-

-

2

400

410

-368,64

-295,91

109084,3

135895,4

87562,73

-

-

-

-

-

-

3

715

400

-53,64

-305,91

16409,01

2877,25

93580,93

410

-90,5

-243

21991,5

8190,25

59049

4

600

715

-168,64

9,09

-1532,94

28439,45

82,6281

400

-205,5

-253

51991,5

42230,25

64009

5

585

600

-183,64

-105,91

19449,31

33723,65

11216,93

715

-220,5

62

-13671

48620,25

3844

6

560

585

-208,64

-120,91

25226,66

43530,65

14619,23

600

-245,5

-53

13011,5

60270,25

2809

7

975

560

206,36

-145,91

-30110

42584,45

21289,73

585

169,5

-68

-11526

28730,25

4624

8

800

975

31,36

269,09

8438,662

983,4496

72409,43

560

-5,5

-93

511,5

30,25

8649

9

765

800

-3,64

94,09

-342,488

13,2496

8852,928

975

-40,5

322

-13041

1640,25

103684

10

720

765

-48,64

59,09

-2874,14

2365,85

3491,628

800

-85,5

147

-12568,5

7310,25

21609

11

1235

720

466,36

14,09

6571,012

217491,6

198,5281

765

429,5

112

48104

184470,3

12544

12

1100

1235

331,36

529,09

175319,3

109799,4

279936,2

720

294,5

67

19731,5

86730,25

4489

8865

7765

-0,04*

-0,01*

325638,6

617704,5

593240,9

6530

0

0

104535

468222,5

285310

* сумма не равна нулю в виду наличия ошибок округления.

.

Коэффициент автокорреляции первого и второго порядков составят:

Аналогично рассчитываются коэффициенты автокорреляции третьего, четвертого и пятого порядков, составившие: r3 = 0,432; r3 = 0,992; r3 = 0,373.

Анализ рассчитанных коэффициентов автокорреляции позволяет сказать, что в данном ряду динамики имеется тенденция и сезонные колебания с периодом, равным 4.