
- •3. Основные понятия теории информации. Энтропия. Количество информации, передаваемое при равновероятном и неравновероятном распределении символов в сообщений.
- •4. Понятие дискретного сигнала и цифрового сигнала. Значащая позиция, значащий момент, единичный интервал, значащий интервал, единичный элемент.
- •5. Скорость передачи информации и скорость модуляции. Стартстопный метод передачи. Виды модуляции.
- •6. Изохронные и анизохронные сигналы, синхронные и асинхронные дискретные каналы. Скорость модуляции. Скорость передачи информации при различной кратности модуляции.
- •7. Структура сетей передачи дискретных сообщений. Семиуровневая структура взаимодействия открытых систем. Протоколы и интерфейсы.
- •8. Коммутация в сетях пдс. Виды коммутации. Коммутация с запоминанием. Прозрачность сетей пдс.
- •9. Коммутация каналов, пакетов, сообщений. Коммутация значащих моментов. Синхронные и асинхронные методы передачи и коммутации дискретных сигналов.
- •10. Дейтаграммный и виртуальный метод коммутации пакетов. Основные преимущества и недостатки методов коммутации дискретных сигналов.
- •12. Ввод стартстопных сигналов в цифровой синхронный тракт. Синхронное и асинхронное сопряжение цифровых систем передачи дс.
- •13. Пропускная способность среды передачи. Вывод формулы Найквиста. Формула Найквиста в случае многократной модуляции. Относительная скорость модуляции.
- •14. Устройства преобразования сигнала и их виды. Назначение упс.
- •15. Каналы тч и их характеристики ачх, фчх, гвз. Влияние отклонений характеристик каналов тч от стандартных на искажения передаваемых сигналов.
- •16. Телеграфные каналы. Электронный телеграфный аппарат. Телеграфные сети и коммутационные узлы.
- •17. Факсимильная связь. Современные средства факсимильной связи.
- •Недостатки телефаксов
- •Новая аппаратура факсимильной связи
- •18. Помехи в каналах пдс и борьба с ними.
- •19. Методы модуляции. Модемы.
- •20. Устройства защиты от ошибок. Расширенный канал передачи данных. Кодирование и декодирование. Равномерные, неравномерные, приводимые и неприводимые коды.
- •21. Простые и корректирующие коды. Хэмминговое расстояние и вес кодовой комбинации. Контроль по четности.
- •22. Вероятность ошибочного приема кодовых комбинаций при передаче информации простыми кодами.
- •23. Простейшие коды с обнаружением ошибок. Код с четным числом единиц. Коды с постоянными весами. Вероятности необнаруженной ошибки.
- •24. Корректирующие коды, проверочные и информационные элементы. Корректирующая способность кода. Соотношения между кратностью обнаруженных и корректируемых ошибок и Хэмминговым расстоянием кода.
- •25. Принципы построения корректирующих кодов. Хэммингово расстояние. Коэффициент избыточности и коэффициент обнаружения.
- •26. Код Хэмминга. Синдром ошибки. Вероятность приема комбинации с ошибкой и вероятность необнаруженной ошибки.
- •27. Классификация кодов. Итеративный код. Хэммингово расстояние итеративного кода и исправляющая способность.
- •28. Циклические коды. Синдром ошибки циклического кода. Операции над полиномами циклического кода и их особенности. Производящие полиномы циклических кодов.
- •29. Принцип формирования циклических кодов из информационных комбинаций передаваемых последовательностей. Обнаружение ошибок при циклическом кодировании.
- •30. Передача дискретной информации в телефонных сетях общего пользования.
- •31. Передача дискретных сообщений в системах сотовой телефонной связи.
- •32. Протоколы канального уровня окс №7, ppp
- •33. Системы с информационной и решающей обратной связью.
- •34. Свёрточные коды
- •35. Локальные и глобальные сети. Internet. Основные протоколы.
- •37. Формула Шеннона-Хартли.
8. Коммутация в сетях пдс. Виды коммутации. Коммутация с запоминанием. Прозрачность сетей пдс.
Процесс выбора электрических цепей и объединение их в соединительный тракт называется коммутацией каналов. Сеть, обеспечивающая коммутацию каналов, называется сетью с коммутацией каналов. После установления соединения в такой сети информация от источника к получателю поступает в реальном времени с учетом лишь физических задержек распространения сигнала по цепи. Это является достоинством таких сетей. Недостаток – пока общий ресурс сети (узлы коммутации и соединительные линии) занят одной парой пользователей сети, другие абоненты не могут в этот интервал времени воспользоваться сетью, даже в том случае, если по ней не передается никакой информации.
В сетях связи возможны и другие режимы работы. Передачу документальных сообщений можно выполнять не только после установления всего соединительного тракта («из конца в конец»), а поэтапно, от одного узла коммутации к другому. В каждом последующем узле принятое сообщение становится в очередь и отправляется к очередному узлу по мере освобождения линии. Такая организация доставки информации называется коммутацией сообщений, а сеть, обеспечивающая коммутацию сообщений, называется сетью с коммутацией сообщений. «Простои» соединительных линий в такой сети оказываются менее продолжительными, и в целом такая сеть может передать больший объем информации.
Вариантом сети с коммутацией сообщений является сеть с коммутацией пакетов. В такой сети отправляемые сообщения разбиваются на блоки (пакеты) фиксированного размера. По сети каждый такой пакет передается как самостоятельное сообщение. В месте приема исходное сообщение восстанавливается из набора полученных пакетов. Эффективность такого режима работы сети оказывается еще выше. На практике наиболее часто используют методы с коммутацией каналов и коммутацией пакетов.
Cквозная коммутация - способ коммутации, при котором блок данных начинает передаваться ретрансляционной системой до того, как его содержимое ею получено полностью. Важным преимуществом сквозной коммутации является очень небольшая задержка блока в ретрансляционной системе. Поэтому рассматриваемая коммутация, обеспечивая коммутацию каналов, ретрансляцию кадров либо ретрансляцию ячеек, используется в сетях скоростной коммутации данных, а также в коммутируемых локальных сетях. Метод сквозной коммутации основан на том, что выбор канала, по которому далее передается блок данных, происходит тотчас, как только прочитан адрес его назначения. Адрес располагается в начальной части блока. Между тем, сквозная коммутация имеет и ряд недостатков. Первый из них заключается в том, что в этом режиме не обеспечивается выявления ошибок с помощью Контроля циклической избыточности CRC. Правда, в современных высоконадежных сетях это не имеет существенного значения. Второй недостаток сквозной коммутации связан с тем, что блок данных не может быть передан из канала с низкой в канал, работающий с более высокой скоростью. Альтернативой рассматриваемой является коммутация с запоминанием.
Коммутация с запоминанием - способ коммутации, при котором блок данных передается ретрансляционной системой после того, как его содержимое получено ею полностью. Коммутация с запоминанием является классической технологией, используемой при коммутации пакетов и коммутации сообщений. Она заключается в том, что из принятого ретрансляционной системой пакета либо сообщения извлекаются заголовок, концевик и содержащаяся в нем передаваемая информация. Затем, осуществляется проверка ошибок с помощью Контроля циклической избыточности CRC. Рассматриваемая коммутация проста, но характеризуется относительно большими задержками, происходящими в ретрансляционных системах. Поэтому в скоростных сетях она заменяется сквозной коммутацией.
Прозрачностью называется свойство участка сети (между двумя пользователями, между двумя ЦК, между пользователем и ЦК) сохранять неизменным определенное свойство передаваемой последовательности кодовых элементов. Например, в сети с коммутацией каналов между пользователями устанавливается с помощью определенных процедур сигнализации временное прямое соединение. Организованный физический канал является прозрачным к любой последовательности бит, независимо от типа АП (ПЭВМ), режима передачи, применяемых первичных кодов. Аналогичным образом может быть определена прозрачность к способам защиты от ошибок, системе синхронизации, методам контроля потоков и другим функциональным особенностям сети. Понятие прозрачности сети является весьма важным, поскольку обеспечение прозрачности на более высоком уровне, чем прозрачности по битам – прозрачности в отношении алгоритмов, форматов и т.д. позволяет решать задачу объединения сетей ПДС, построенных на различных принципах.