
- •Философская сущность понятия «информация». Единицы измерения информации. Математическая, логическая и физическая сущность единицы информации.
- •Понятие равновероятных событий. Понятие «Уменьшение неопределенности в два раза». Формула Шеннона для измерения количества информации.
- •Понятие кодирования текстовой информации в форматах ascii, Unicode, iso 10646. Структура и назначение таблиц кодировок символов. Кодирование графической информации.
- •Описание видов систем счисления. Развернутая форма записи числа.
- •Представление чисел в машинных кодах. Естественная и нормальная формы представления чисел. «машинные» системы счисления
- •Понятия нормализованного числа, мантиссы, диапазонов представления чисел.
- •Понятие кодов с выявлением ошибок. Описание способов проверки на четность.
- •Блоковые коды
- •Линейные коды общего вида
- •Минимальное расстояние и корректирующая способность
- •Коды Хемминга
- •Применение
- •Полиномы crc и бит чётности
- •Примеры
- •Понятия кодов с исправлением ошибок, общего числа комбинаций, запрещенных комбинаций.
- •Блоковые коды
- •Линейные коды общего вида
- •Минимальное расстояние и корректирующая способность
- •Коды Хемминга
- •Применение
- •Полиномы crc и бит чётности
- •Примеры
- •Основные принципы построения кодов Хемминга с исправлением ошибок. Самоконтролирующиеся коды
- •Самокорректирующиеся коды
- •Аксиомы и модели булевой алгебры. Понятие изоморфизма. Основные понятия алгебры логики.
- •Определение, условное обозначение и таблицы истинности логических операций. Приоритет логических операций.
- •Понятие функций алгебры логики. Способы описания функций алгебры логики.
- •Характеристика понятий элементарной конъюнкции и элементарной дизъюнкции. Понятия ранга логической функции, минтерма и макстерма.
- •Понятие канонических форм логической функции (кнф, днф, скнф, сднф).
- •Способы построения кубических комплексов. Понятия п-мерного куба, нулевого куба, единичного куба, ранга куба.
- •Понятие булевых функций от одной и двух переменных, их Условное графическое обозначение.
- •Описание функционально полных систем (и, не), (или, не), (или, и, не), (или-не), (и-не).
- •Понятия логического базиса, полного базиса, минимального базиса.
- •Назначение и свойства цифровых автоматов.
- •Характеристики и особенности функционирования комбинационных схем, или автоматов без памяти.
- •Характеристики и особенности функционирования последовательностных схем, или автоматов с памятью (полного автомата, автомата Мили, автомата Мура).
- •Описание алгоритма синтеза комбинационной схемы по заданной таблице.
- •Назначение мультиплексоров. Условное графическое обозначение.
- •Назначение демультиплексоров. Условное графическое обозначение.
- •Назначение шифраторов. Их виды. Условное графическое обозначение.
- •Назначение дешифраторов. Условное графическое обозначение.
- •Назначение и устройство компаратора. Условное графическое обозначение.
- •Назначение одноразрядного сумматора и полусумматора.
- •Принципы функционирования последовательных и параллельных сумматоров.
- •Классификация и общие характеристики триггеров.
- •Характеристика, таблица состояний, условное графическое обозначение асинхронного rs-триггера.
- •Характеристика, таблица состояний, условное графическое обозначение асинхронного d-триггера.
- •Характеристика, таблица состояний, условное графическое обозначение асинхронного t-триггера.
- •Характеристика, таблица состояний, условное графическое обозначение одно- и двухступенчатого синхронного rs-триггера.
- •Характеристика, таблица состояний, условное графическое обозначение синхронного d-триггера.
- •Характеристика, таблица состояний, условное графическое обозначение синхронного jk-триггера.
- •Характеристика, таблица состояний, условное графическое обозначение синхронного t-триггера.
- •Виды, устройство, назначение и функционирование регистров.
- •Операции в регистрах
- •Классификация регистров
- •Типы регистров
- •Описание схем построения регистров. Условное графическое обозначение, примеры реализации регистров.
- •Описание схем параллельного и последовательного способов передачи информации в регистрах.
- •2.1 Последовательные регистры
- •Описание схемы функционирования регистров сдвига.
- •Определение
- •Виды счетчиков и их назначение.
- •Классификация
- •Современное состояние и перспективы развития элементной базы и средств вычислительной техники.
Описание функционально полных систем (и, не), (или, не), (или, и, не), (или-не), (и-не).
С х е м а И
Схема И реализует конъюнкцию двух или более логических значений. Условное обозначение на структурных схемах схемы И с двумя входами представлено на рис. 5.1.
Рис. 5.1
Таблица истинности схемы И
x |
y |
x . y |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет ноль, на выходе также будет ноль.
Связь между выходом z этой схемы и входами x и y описывается соотношением: z = x . y (читается как "x и y"). Операция конъюнкции на структурных схемах обозначается знаком "&" (читается как "амперсэнд"), являющимся сокращенной записью английского слова and.
С х е м а ИЛИ
Схема ИЛИ реализует дизъюнкцию двух или более логических значений. Когда хотя бы на одном входе схемы ИЛИ будет единица, на её выходе также будет единица.
Условное обозначение на структурных схемах схемы ИЛИ с двумя входами представлено на рис. 5.2. Знак "1" на схеме — от устаревшего обозначения дизъюнкции как ">=1" (т.е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1). Связь между выходом z этой схемы и входами x и y описывается соотношением: z = x v y (читается как "x или y").
Рис. 5.2
Таблица истинности схемы ИЛИ
x |
y |
x v y |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
С х е м а НЕ
Схема
НЕ
(инвертор) реализует операцию отрицания.
Связь между входом x этой
схемы и выходом z
можно записать соотношением z =
,
где
читается
как "не
x" или"инверсия
х".
Если на входе схемы 0, то на выходе 1. Когда на входе 1, на выходе 0. Условное обозначение на структурных схемах инвертора — на рисунке 5.3
Рис. 5.3
Таблица истинности схемы НЕ
x |
|
0 |
1 |
1 |
0 |
С х е м а И—НЕ
Схема И—НЕ состоит
из элемента И и
инвертора и осуществляет отрицание
результата схемы И. Связь
между выходом z и
входами x и y схемы
записывают следующим образом:
,
где
читается как "инверсия
x и y".
Условное обозначение на структурных
схемах схемы И—НЕ
с двумя входами представлено на рисунке
5.4.
Рис. 5.4
Таблица истинности схемы И—НЕ
x |
y |
|
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
С х е м а ИЛИ—НЕ
Схема ИЛИ—НЕ состоит
из элемента ИЛИ и
инвертора и осуществляет отрицание
результата схемы ИЛИ.
Связь между выходом z
и входами x
и y
схемы записывают следующим образом:
,
где
,
читается как "инверсия
x или y ". Условное
обозначение на структурных схемах
схемы ИЛИ—НЕ с
двумя входами представлено на рис. 5.5.
Рис. 5.5
Таблица истинности схемы ИЛИ—НЕ
x |
y |
|
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |