
- •Оглавление
- •1 Операционные системы. Общие понятия 6
- •2 Однопользовательские операционные системы 16
- •3 Сетевые операционные системы 18
- •4 Управление локальными ресурсами 23
- •5 Современные концепции и технологии проектирования операционных систем 60
- •Введение
- •1Операционные системы. Общие понятия
- •1.1Понятие и функции операционной системы
- •1.1.1Ос как расширенная машина
- •1.1.2Ос как система управления ресурсами
- •1.2Этапы развития ос
- •1.3Классификация ос
- •1.3.1Особенности алгоритмов управления ресурсами
- •Поддержка многозадачности
- •Поддержка многопользовательского режима
- •Вытесняющая и невытесняющая многозадачность
- •Поддержка многонитевости
- •Многопроцессорная обработка
- •1.3.2Особенности аппаратных платформ
- •1.3.3Особенности областей использования
- •1.3.4Особенности методов построения
- •2Однопользовательские операционные системы
- •2.1Структура однозадачной операционной системы
- •2.2Структура многозадачной операционной системы
- •3Сетевые операционные системы
- •3.1Структура сетевой операционной системы
- •3.2Одноранговые сетевые ос и ос выделенных серверов
- •4Управление локальными ресурсами
- •4.1Понятие ресурса
- •4.1.1Свойства и классификация ресурсов
- •4.1.2Действия над ресурсами
- •4.2Управление процессами
- •4.2.1Состояние процессов
- •4.2.2Алгоритмы планирования процессов
- •4.2.3Вытесняющая и невытесняющая многозадачность
- •4.2.4Нити
- •4.2.5Взаимодействие процессов Разделяемая память
- •Программные каналы
- •Системы, управляемые событиями
- •4.2.6Средства синхронизации процессов Проблема синхронизации
- •Критическая секция
- •4.3Управление памятью
- •4.3.1Типы адресов
- •4.3.2Методы распределения памяти без использования дискового пространства
- •Распределение памяти фиксированными разделами
- •Распределение памяти разделами переменной величины
- •Перемещаемые разделы
- •4.3.3Методы распределения памяти с использованием дискового пространства Понятие виртуальной памяти
- •Страничное распределение
- •Сегментное распределение
- •Странично-сегментное распределение
- •Свопинг
- •4.3.4Иерархия запоминающих устройств. Принцип кэширования данных
- •4.4Управление вводом-выводом
- •4.4.1Физическая организация устройств ввода-вывода
- •4.4.2Организация программного обеспечения ввода-вывода
- •Обработка прерываний
- •Драйверы устройств
- •Независимый от устройств, слой операционной системы
- •Пользовательский слой программного обеспечения
- •4.5Файловая система
- •4.5.1Имена файлов
- •4.5.2Типы файлов
- •4.5.3Логическая организация файла
- •4.5.4Физическая организация и адрес файла
- •4.5.5Права доступа к файлу
- •4.5.6Общая модель файловой системы
- •4.5.7Отображаемые в память файлы
- •4.5.8Современная архитектура файловой системы
- •5Современные концепции и технологии проектирования операционных систем
- •5.1Требования, предъявляемые к ос нового поколения
- •5.2Пользовательский интерфейс
- •5.2.1Интерфейс cli
- •5.2.2Интерфейс gui
- •5.3Операционная система Windows nt
- •5.3.1История создания
- •5.3.2Особенности Windows nt версий 4.0 и 5.0
- •5.3.3Требования к аппаратуре
- •5.3.4Области использования Windows nt
- •5.3.5Микроядерная структура Windows nt
- •5.3.6Планирование процессов и нитей
- •5.3.7Управление памятью
- •5.3.8Файловые системы Windows nt
- •Файловая система fat
- •Файловая система ntfs Структура ntfs
- •Короткие имена
- •Надежность ntfs
- •5.3.9Управление вводом-выводом в Windows nt
- •5.3.10Встроенная сетевая поддержка в Windows nt
- •5.3.11Доменная справочная служба Windows nt
- •5.3.12Служба каталогов Active Directory Общие сведения о службе каталогов
- •Архитектура Active Directory
- •Модель данных
- •Логическая структура
- •Модель защиты данных
- •Модель управления
- •Свойства Active Directory
- •Интеграция dns
- •Именование объектов
- •Доступ к Active Directory
- •Виртуальные контейнеры
- •Глобальный каталог
- •Безопасность
- •Репликация
- •Деревья и лес
- •Логическая структура
- •Публикация
- •Лабораторные работы по курсу «Операционные системы»
- •Управление файлами в ms dos
- •Основные отличия Windows от ms dos
- •Windows и объектно-ориентированное программирование
- •Принцип разделения ресурсов компьютера при работе нескольких задач в Windows
- •Динамически подключаемые библиотеки (dll) и принципы организации памяти Windows
- •Реестр Windows
- •Управление файлами в Windows
- •Общая организация традиционного ядра ос unix
- •Основные функции ядра
- •Принципы взаимодействия с ядром
- •Принципы обработки прерываний
- •Файловая система Linux
- •Задание на лабораторную работу
- •Состояние процессов
- •Алгоритмы планирования процессов
- •Взаимодействие и синхронизация процессов
- •Задание на лабораторную работу
- •Варианты заданий
- •Методы распределения памяти с использованием дискового пространства
- •Задание на лабораторную работу
- •Варианты заданий
- •Общая модель файловой системы
- •Физическая организация файла на устройстве внешней памяти
- •Файловая система fat
- •Файловая система ntfs
- •Файловая система ext2
- •Журналируемые файловые системы
- •Задание на лабораторную работу
- •Варианты заданий
- •Литература
Методы распределения памяти с использованием дискового пространства
1) Страничное распределение
В этом случае (см. рис. 4.7) виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного для данной системы размера, называемые виртуальными страницами. Вся оперативная память машины также делится на части такого же размера, называемые физическими страницами (или блоками).
При загрузке процесса часть его виртуальных страниц помещается в оперативную память, а остальные – на диск. При загрузке операционная система создает для каждого процесса информационную структуру – таблицу страниц, в которой устанавливается соответствие между номерами виртуальных и физических страниц для страниц, загруженных в оперативную память, или делается отметка о том, что виртуальная страница выгружена на диск. Кроме того, в таблице страниц содержится управляющая информация, такая как признак модификации страницы, признак невыгружаемости, признак обращения к странице и т.д.
При каждом обращении к памяти происходит чтение из таблицы страниц информации о виртуальной странице, к которой произошло обращение. Если данная виртуальная страница находится в оперативной памяти, то выполняется преобразование виртуального адреса в физический. Если же нужная виртуальная страница в данный момент выгружена на диск, то происходит так называемое страничное прерывание. Выполняющийся процесс переводится в состояние ожидания, и активизируется другой процесс из очереди готовых. Параллельно программа обработки страничного прерывания находит на диске требуемую виртуальную страницу и пытается загрузить ее в оперативную память. Если в памяти имеется свободная физическая страница, то загрузка выполняется немедленно, если же свободных страниц нет, то решается вопрос, какую страницу следует выгрузить из оперативной памяти.
Страничное распределение памяти может быть реализовано в упрощенном варианте, без выгрузки страниц на диск. В этом случае все виртуальные страницы всех процессов постоянно находятся в оперативной памяти. Такой вариант страничной организации хотя и не предоставляет пользователю виртуальной памяти, но почти исключает фрагментацию за счет того, что программа может загружаться в несмежные области, а также того, что при загрузке виртуальных страниц никогда не образуется остатков.
2) Сегментное распределение
При страничной организации виртуальное адресное пространство процесса делится механически на равные части. Это не позволяет дифференцировать способы доступа к разным частям программы (сегментам), а это свойство часто бывает очень полезным. Кроме того, разбиение программы на «осмысленные» части делает принципиально возможным разделение одного сегмента несколькими процессами.
При сегментном распределении памяти (см. рис. 4.8) виртуальное адресное пространство процесса делится на сегменты, размер которых определяется программистом с учетом смыслового значения содержащейся в них информации. Отдельный сегмент может представлять собой подпрограмму, массив данных и т.п. Иногда сегментация программы выполняется по умолчанию компилятором.
При загрузке процесса часть сегментов помещается в оперативную память (при этом для каждого из этих сегментов операционная система подыскивает подходящий участок свободной памяти), а часть сегментов размещается в дисковой памяти. Сегменты одной программы могут занимать в оперативной памяти несмежные участки. Во время загрузки система создает таблицу сегментов процесса (аналогичную таблице страниц), в которой для каждого сегмента указывается начальный физический адрес сегмента в оперативной памяти, размер сегмента, правила доступа, признак модификации, признак обращения к данному сегменту за последний интервал времени и некоторая другая информация. Если виртуальные адресные пространства нескольких процессов включают один и тот же сегмент, то в таблицах сегментов этих процессов делаются ссылки на один и тот же участок оперативной памяти, в который данный сегмент загружается в единственном экземпляре.
Система с сегментной организацией функционирует аналогично системе со страничной организацией: время от времени происходят прерывания, связанные с отсутствием нужных сегментов в памяти, при необходимости освобождения памяти некоторые сегменты выгружаются. Кроме того, при обращении к памяти проверяется, разрешен ли доступ требуемого типа к данному сегменту.
Недостатком данного метода распределения памяти является фрагментация на уровне сегментов и более медленное по сравнению со страничной организацией преобразование адреса.
3) Странично-сегментное распределение
Данный метод представляет собой комбинацию страничного и сегментного распределения памяти и, вследствие этого, сочетает в себе достоинства обоих подходов. Виртуальное пространство процесса делится на сегменты, а каждый сегмент в свою очередь делится на виртуальные страницы, которые нумеруются в пределах сегмента. Оперативная память делится на физические страницы. Загрузка процесса выполняется операционной системой постранично, при этом часть страниц размещается в оперативной памяти, а часть на диске. Для каждого сегмента создается своя таблица страниц, структура которой полностью совпадает со структурой таблицы страниц, используемой при страничном распределении. Для каждого процесса создается таблица сегментов, в которой указываются адреса таблиц страниц для всех сегментов данного процесса. Адрес таблицы сегментов загружается в специальный регистр процессора, когда активизируется соответствующий процесс.
4) Свопинг
В соответствии с этим методом некоторые процессы (обычно находящиеся в состоянии ожидания) временно выгружаются на диск. Планировщик операционной системы не исключает их из своего рассмотрения, и при наступлении условий активизации некоторого процесса, находящегося в области свопинга на диске, этот процесс перемещается в оперативную память. Если свободного места в оперативной памяти не хватает, то выгружается другой процесс.
При свопинге, в отличие от рассмотренных ранее методов реализации виртуальной памяти, процесс перемещается между памятью и диском целиком.