
- •3 Приборы для измерения давления
- •4Гидростатическая машина
- •Принцип действия гидростатических машин
- •Лекция 3. Основы гидродинамики
- •3.1. Основные понятия о движении жидкости
- •3.2. Уравнение Бернулли для идеальной жидкости
- •3.3. Уравнение Бернулли для реальной жидкости
- •3.4. Измерение скорости потока и расхода жидкости
- •9 Уравнение неразрывности
- •30. Геометрический смысл уравнения Бернулли
- •Режимы движения жидкости
- •Коэффициенты сжатия, скорости и расхода.
- •Насадки их виды и области применения
- •7.1. Истечение жидкости через насадки.
- •7.2. Истечение жидкости из отверстий
- •3.1. Основные понятия о движении жидкости-вопрос 17
- •Классификация трубопроводов
- •Основные рабочие характеристики центробежных насосов Изменения в зависимости от скорости
- •Изменения в зависимости от диаметра рабочей части
- •[Править]Поршневые компрессоры с лабиринтным уплотнением
- •1. Техническая термодинамика
- •1.1. Внутренняя энергия газа. Идеальный газ
- •1.3. Параметры состояния идеального газа
- •1.4. Уравнение состояния идеального газа
- •1.7. Термодинамический процесс в координатах pv
- •Физические свойства газов: термины, определения и параметры
- •Теплоемкость газа:
- •Удельная массовая теплоемкость газа (при постоянном давлении):
- •Температуропроводность газа:
- •Описание цикла Карно
- •[Править]кпд тепловой машины Карно
- •Связь между обратимостью цикла и кпд
- •Гидроклапаны
- •Гидроаппараты - элементы управления объёмными гидравлическими приводами: типы, виды, классификация, устройство.
- •Преимущества гидропривода и его недостатки.
Описание цикла Карно
Цикл Карно в координатах P и V
Цикл Карно в координатах T и S
Пусть тепловая
машина состоит
из нагревателя с температурой
,
холодильника с температурой
и рабочего
тела.
Цикл Карно состоит из четырёх стадий:
Изотермическое расширение (на рисунке — процесс A→Б). В начале процесса рабочее тело имеет температуру , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты
. При этом объём рабочего тела увеличивается.
Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
Изотермическое сжатие (на рисунке — процесс В→Г). Рабочее тело, имеющее к тому времени температуру , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты
.
Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.
При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия:
при
.
Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).
[Править]кпд тепловой машины Карно
Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно
.
Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику
.
Отсюда коэффициент полезного действия тепловой машины Карно равен
.
Из последнего выражения видно, что КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.
Поэтому максимальный КПД любой тепловой машины будет меньше или равен КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Например, КПД идеального цикла Стирлинга равен КПД цикла Карно.
Связь между обратимостью цикла и кпд
Для того, чтобы цикл был обратимым, из него должна быть исключена передача теплоты при наличии разности температур (так как такие процессы необратимы в силу постулата Томсона). Значит, передача теплоты должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того, чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.
Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД.
Если же в цикле возникает передача теплоты при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше чем КПД цикла Карно.
Дви́гатель вну́треннего сгора́ния (сокращённо ДВС) — это тип двигателя, тепловой машины, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую энергию.
Несмотря на то, что двигатель внутреннего сгорания относится к относительно несовершенному типу тепловых машин (громоздкость, сильный шум, токсичные выбросы и необходимость системы их отвода, относительно небольшой ресурс, необходимость охлаждения и смазки, высокая сложность в проектировании, изготовлении и обслуживании, сложная система зажигания, большое количество изнашиваемых частей, высокое потребление горючего и так далее), благодаря своей автономности (используемое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы), ДВС очень широко распространены, — например, на транспорте.
ПНЕВМАТИЧЕСКИЕ ПРИВОДЫ Источником энергий для пневматических приводов зажимных устройств служит сжатый воздух давлением 5—6 ати. Как источник энергии сжатый воздух обладает рядом преимуществ, как-то: возможностью осушествления почти мгновенного действия, централизованного питания выпуска отработанного воздуха прямо в атмосферу, возможностью работы при низких температурах. Основными элементами любого пневматического привода зажимного устройства являются:силовой узел, пневматическая аппаратура и воздухопроводы. В качестве силового узла используются либо цилиндр с поршнем, либо пневматическая камера с диафрагмой; соответственно и приводы делятся на поршневые, диафрагменные и лопастные. С точки зрения компоновки с зажимными приспособлениями токарных станков как поршневые, так и диафрагменные приводы могут быть встроенными или прикрепленными (агрегатированными). Первые являются специальными и не могут быть переставлены в зажимные приспособления иной конструкции; прикрепленные же приводы полностью выделены в самостоятельный агрегат и много-, кратно используются в компоновках с различными приспособлениями. Приводы зажимных устройств могут быть двухстороннего действия, когда рабочий и холостой ход осушествляется сжатым воздухом, и одностороннего, когда рабочий ход производится сжатым воздухом, а холостой — силой пружины. На фиг. 41 представлена принципиальная схема работы поршневых пневмоприводов. К их основным конструктивным элементам относятся: цилиндр 1, поршень 2, шток 5, переключаюший распределительный кран 4, воздухопроводы 6, Последние выполняются из резиновых шлангов или латунных трубок. Цилиндр 1 представляет собой герметически закрытый сосуд, разделенный поршнем 2 на две полости. Каждая полость с помошью резиновых шлангов или латунных трубок соединяется с распределительным краном. Кран попеременно направляет сжатый воздух в рабочие полости цилиндра и одновременно освобождает от отработанного воздуха нерабочие плоскости, сообщая их с атмосферой. Фиг. 41 Принципиальная схема работы пневматического привода. Кран состоит из корпуса 4 и золотника5. Отверстия а и б в золотнике располагаются таким образом, что при одном крайнем положении золотника 5 отверстия а соединяют одну полость цилиндра (т. е. рабочую полость) с сетью сжатого воздуха, а отверстия б соединяют другую полость цилиндра с атмосферой. Когда золотник 5 занимает другое крайнее положение, сжатый воздух направляется в другую полость цилиндра, а первая полость соединяется с атмосферой через отверстие а. Поворачивая золотник и управляя, таким образом, направлением сжатого воздуха, заставляют поршень совершать возвратно-поступательное движение: Основной характеристикой пневматического поршневого привода является сила Г, развиваемая на штоке. При отсутствии движения поршня для полости без штока