
- •3 Приборы для измерения давления
- •4Гидростатическая машина
- •Принцип действия гидростатических машин
- •Лекция 3. Основы гидродинамики
- •3.1. Основные понятия о движении жидкости
- •3.2. Уравнение Бернулли для идеальной жидкости
- •3.3. Уравнение Бернулли для реальной жидкости
- •3.4. Измерение скорости потока и расхода жидкости
- •9 Уравнение неразрывности
- •30. Геометрический смысл уравнения Бернулли
- •Режимы движения жидкости
- •Коэффициенты сжатия, скорости и расхода.
- •Насадки их виды и области применения
- •7.1. Истечение жидкости через насадки.
- •7.2. Истечение жидкости из отверстий
- •3.1. Основные понятия о движении жидкости-вопрос 17
- •Классификация трубопроводов
- •Основные рабочие характеристики центробежных насосов Изменения в зависимости от скорости
- •Изменения в зависимости от диаметра рабочей части
- •[Править]Поршневые компрессоры с лабиринтным уплотнением
- •1. Техническая термодинамика
- •1.1. Внутренняя энергия газа. Идеальный газ
- •1.3. Параметры состояния идеального газа
- •1.4. Уравнение состояния идеального газа
- •1.7. Термодинамический процесс в координатах pv
- •Физические свойства газов: термины, определения и параметры
- •Теплоемкость газа:
- •Удельная массовая теплоемкость газа (при постоянном давлении):
- •Температуропроводность газа:
- •Описание цикла Карно
- •[Править]кпд тепловой машины Карно
- •Связь между обратимостью цикла и кпд
- •Гидроклапаны
- •Гидроаппараты - элементы управления объёмными гидравлическими приводами: типы, виды, классификация, устройство.
- •Преимущества гидропривода и его недостатки.
Теплоемкость газа:
,
[Дж/К]
где
dQ - количество теплоты, необходимое для нагревания газа.
dT - разность температуры.
Джоуль на кельвин [Дж/К] равен теплоемкости газа, температура которого повышается на 1 К при подведении к нему количества теплоты 1 Дж.
Удельная массовая теплоемкость газа (при постоянном давлении):
,
[Дж/(кг К)]
Джоуль на килограмм-кельвин [Дж/(кг К)] равен удельной теплоемкости газа, имеющего при массе 1 кг теплоемкость 1 Дж/К.
Температуропроводность газа:
,
[м2/с]
где
-
теплопроводность газа.
Cp - удельная теплоемкость газа.
- плотность газа.
Квадратный метр на секунду [м2/с] равен температуропроводности газа с коэффициентом теплопроводности 1 Вт/(м К), удельной теплоемкостью при постоянном давлении 1 [Дж/(кг К) и плотностью 1 кг/м3.
|
||||||||||
Давление p, объем V и температура T идеального газа связаны между собой уравнением Менделеева–Клапейрона:
Здесь ν – количество вещества, R = 8,31 Дж/(моль·К) – универсальная газовая постоянная.
Если температура газа остается постоянной, то выполняется закон Бойля–Мариотта:
Если постоянным остается давление, то выполняется закон Гей-Люссака:
Наконец, если постоянен объем, то справедлив закон Шарля:
Для смеси газов справедлив закон Дальтона. Давление смеси идеальных газов равняется сумме парциальных давлений каждого из газов в отдельности.
|
Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.
Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году.
Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.