
- •1. Значение науки в материальной, социальной и духовной культуре общества.
- •История развития естествознания. Методы современного естествознания и их характеристика.
- •Особенности неклассического естествознания:
- •Особенные –
- •Частные –
- •3.Понятие и содержание современной естественнонаучной картины мира.
- •5. Системный подход: основные понятия и методологические возможности.
- •6.Синергетический подход и его значение в современном научном познании. Самоорганизация систем.
- •8. Материя, ее свойства. Уровни структурной организации материи, их характеристика
- •10.Теория относительности в естественнонаучном познании. Относительность в реальном мире.
- •11. Пространство и время как формы существования материи. Свойства пространства-времени. Законы сохранения.
- •12. Термодинамическое и статическое описание макросистем. Тепловые процессы. Значение термодинамики при изучении процессов реального мира.
- •13. Движение. Формы движения материи в окружающей природе. Порядок и хаос.
- •17. Объекты мегамира. Общие сведения о строении и структуре мегамира (космоса).
- •18. Галактики. Характеристика Млечного пути. Эволюция звезд.
- •22. Значение химии в естествознании. Этапы развития химических концепций. Основные понятия химии.
- •23. Учение о составе вещества. Свойства веществ. Распространение химических элементов в природе.
- •27. Эволюционная теория. Основные факторы эволюции. Многообразие форм жизни.
- •28. Понятие жизни. Теории возникновения жизни на Земле. Зарождение и эволюция живого.
- •29. Клеточная теория. Живая клетка как основная структурная форма живой материи. Строение и функции клеток.
- •31. Подходы к определению понятия жизни, их достоинства и недостатки. Характерные особенности живой материи.
- •Биосфера. Естественнонаучное познание эволюции биосферы. Теория в.И.Вернадского о биосфере.
- •Учение о ноосфере. Закономерности перехода биосферы в ноосферу.
- •Человек как предмет естественнонаучного познания. Биологическая эволюция человека. Структура природы человека.
- •Проблема соотношения биологического и социального в человеке.
- •Происхождение человека. Основные этапы эволюционного развития. Сходства и различия человека современного и человека первобытного.
- •Человек: индивид и личность. Социобиология о природе человека.
- •Человек: физиология, здоровье, эмоции, творчество, работоспособность.
- •Глобальные экологические проблемы и пути их разрешения. Сохранение живого на земле. Путь к единой культуре.
- •Техносфера. Новые возможности познания мира и самого человека. Взаимосвязь науки и техники.
13. Движение. Формы движения материи в окружающей природе. Порядок и хаос.
Законы движения Ньютона. Если кинематика изучает движение геометрического тела, который не обладает никакими свойствами материального тела, кроме свойства занимать определенное место в пространстве и изменять это положение с течением времени, то динамика изучает движение реальных тел под действием приложенных к ним сил. Установленные Ньютоном три закона механики лежат в основе динамики и составляют основной раздел классической механики.
1 закон: всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние.
2 закон: сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение
3 закон: действию всегда есть равное и противоположное противодействие, иначе тела действуют друг на друга с силами, направленными вдоль одной прямой, равными по модулю и противоположными по направлению
Формы движения материи в живой природе — совокупность жизненных процессов в организмах и в надорганизменных системах:обмен веществ, процессы отражения, саморегуляции, управления и воспроизводства, различные отношения в биоценозах и других экологических системах, взаимодействие всей биосферы с природными системами Земли и обществом. Все внутриорганизменные биологические формы движения материи направлены на обеспечение сохранения организмов, поддержание стабильности внутренней среды в меняющихся условиях существования. Надорганизменные формы движения материи выражают отношения между представителями различных видов в экосистемах и определяют их численность, зону распространения (ареал) и эволюцию.
Порядок. Порядок в физической, экологической, экономической и любой другой системе может быть двух видов: равновесный и неравновесный. При равновесном порядке, когда система находится в равновесии со своим окружением, параметры, которые ее характеризуют, одинаковы с теми, которые характеризуют окружающую среду; при неравновесном порядке они различны.
Хаос. Обычно под хаосом всегда понималось неупорядоченное, случайное, непрогнозируемое поведение элементов системы. Многие годы господствовала теория, утверждавшая, что статистические закономерности определяются только числом степеней свободы: полагали, что хаос – это отражение сложного поведения большого количества частиц, которые, сталкиваясь, создают картину неупорядоченного поведения. Наиболее характерный пример такой картины – броуновское движение мелких частиц в воде. Оно отражает хаотические тепловые перемещения громадного числа молекул воды, случайным образом ударяющих по плавающим в воде частицам, вынуждая их к случайным блужданиям. Однако в самые последние годы внимание исследователей все больше сосредоточилось на так называемом детерминированном хаосе (ДХ). Этот вид хаоса порождается не случайным поведением большого количества элементов системы, а внутренней сущностью нелинейных процессов. (Именно такой хаос и привел к энергетической катастрофе в Нью-Йорке.) в июле 1977 года Нью-Йорк внезапно погрузился во тьму, никто даже не предполагал, что причина катастрофы – переход энергетической системы города из равновесного состояния в хаотическое, вызванный дисбалансом выработки и потребления энергии. Неожиданно из энергетической системы города выпал крупный потребитель. Система автоматики и диспетчерская служба не успели отключить эквивалентную этому потребителю, по существу, работающую только на него, генерирующую станцию. Образовался разрыв между генерацией энергии и ее потреблением, и в результате энергетическая система перешла из состояния равновесия в хаотическое.
14.Электромагнитная картина мира. Развитие представлений о свете. Корпускулярно-волновые свойства света. Гипотеза квантов.
Электромагнитная картина мира.
М. Фарадей(1791-1867)начал электромагнетизм
Д. Максвелл(1831-1879)теории электромагнитного поля
Г.А. Лоренц(1853-1828)электронная теория
А. Эйнштейн(1879-1955)постулаты теории относительности.
Характерные особенности. 1. В рамках элктр.маг. карт.мира сложилась полевая, континуальная(непрерывная) модель реальности: -материя –единое непрерывное поле с точечными силовыми центрами – электрическими зарядами и волновыми движениями в нем; - мир – электро.дин. система, построенная из электрически заряженных частиц, взаимодействующих посредством электр.маг. поля. 2. В электр.маг. картину мира было введено понятие вероятности. 3.Игнорирование дискретной, атомистической природы вещества приводит максвелловскую электродинамику к целому ряду противоречий, которые снимаются с созданием Г. Лоренцом электронной теории или микроскопической электродинамики. Последняя восстанавливает в своих правах дискретные электрические заряды, но она сохраняет и поле как объективную реальность.
Движение – распространение колебаний в поле, которое описываются законами электродинамики.
Принцип близкодействия – взаимодействия любого характера передаются полем от точки к точке непрерывно и с конечной скоростью.
Реляционная концепция пространства и времени: а пространство и время связаны с процессами, происходящими в поле, т.е. они несамостоятельны и зависимы от материи. А. Энштейн ввел в электромагнитную карт.мира идею относительности пространства и времени. Так появилась общая теория относительности, ставшая последней крупной теорией, созданной(1916) в рамках электр.маг. карт.мира.
2.Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболических зеркал, микроскопа, зрительной трубы) эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х. Гюйгенс). Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Волновая теория, в отличие от корпускулярной, рассматривала свет как волновой процесс, подобный механическим волнам. Явления интерференции, дифракции, поляризации света от обычных источников света неопровержимо свидетельствует о волновых свойствах света. Однако и в этих явлениях при соответствующих условиях свет проявляет корпускулярные свойства. В свою очередь, закономерности теплового излучения тел, фотоэлектрического эффекта и других неоспоримо свидетельствуют, что свет ведет себя не как непрерывная, протяженная волна, а как поток «сгустков» (порций, квантов) энергии, т.е. как поток частиц – фотонов. Таким образом, свет сочетает в себе непрерывность волн и дискретность частиц. Если учтем, что фотоны существуют только при движении (со скоростью с), то приходим к выводу, что свету одновременно присущи как волновые, так и корпускулярные свойства. Но в некоторых явлениях при определенных условиях основную роль играют или волновые, или корпускулярные свойства и свет можно рассматривать или как волну, или как частицы (корпускулы).
3. В 1900 г. на заседании Берлинского физического общества М. Планк предложил новую формулу для распределения энергии в спектре серного тела. Эта формула давала полное соответствие с опытом, но ее физический смысл был не вполне понятен. Дополнительный анализ показал, что она имеет смысл только в том случае, если опустить, что излучение энергии происходит не непрерывно, а пределенными порциями — квантами (ε). Более того, ε не является любой величиной, а именно, ε = hν, где h — определенная константа, a v — частота света. Это вело к признанию наравне с атомизмом вещества атомизма энергии или действия, дискретного, квантового характера излучения, что не укладывалось в рамки представлений классической физики. Формулировка гипотезы квантов энергии была началом новой эры в развитии теоретической физики. С большим успехом эту гипотезу начали применять для объяснения других явлений, которые не поддавались описанию на основе представлений классической физики. Существенно новым шагом в развитии квантовой гипотезы было ведение понятия квантов света. 1912 г. А. Пуанкаре окончательно доказал несовместимость формулы Планка и классической механики.
15.Физика микромира. Элементарные частицы как глубинный уровень строения материи, их характеристика.Наиболее высокой формой организации материи является живая материя. Живая материя имеет довольно сложную и до конца не понятую организацию, но в ее основе лежат гигантские макромолекулы. Молекулярная форма организации материи представляет собой мельчайшие элементарные соединения, сохраняющие определенные химические свойства вещества. Количество различных типов молекул по-видимому исчисляется сотнями тысяч.Изучение элементарных частиц показало, что они рождаются и уничтожаются при взаимодействии с другими элементарными частицами. Кроме того, они могут спонтанно распадаться. Свойства элементарных частиц многообразны. Так, каждой частице соответствует своя античастица, отличающаяся от нее лишь знаком заряда. Для частиц с нулевыми значениями всех зарядов античастица совпадает с частицей (например, фотон). Каждая элементарная частица характеризуется собственным набором значений определенных физических величин. К таким величинам относятся: масса, электрический заряд, спин, время жизни частицы, магнитный момент, пространственная четность, лептонный заряд, барионный заряд и др.Выделение и познание характеристик отдельных субатомных частиц -- важный, но только начальный этап познания их мира. На следующем этапе нужно еще понять, какова роль каждой отдельной частицы, каковы ее функции в структуре материи.Физики выяснили, что прежде всего свойства частицы определяются ее способностью (или неспособностью) участвовать в сильном взаимодействии. Частицы, участвующие в сильном взаимодействии, образуют особый класс и называются адронами. Частицы, участвующие преимущественно в слабом взаимодействии и не участвующие в сильном, называются лептонами. Кроме того, существуют частицы -- переносчики взаимодействий.
16. Мегамир. Теория Большого взрыва. Эволюция Вселенной. Космологические модели Вселенной. Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд; звезд и звездных систем — галактик; системы галактик — Метагалактики. Материя во Вселенной представлена сконденсировавшимися космическими телами и диффузной материей. Диффузная материя существует в виде разобщенных атомов и молекул, а также более плотных образований — гигантских” облаков пыли и газа — газово-пылевых туманностей. Значительную долю материи во Вселенной, наряду с диффузными образованиями, занимает материя в виде излучения. Следовательно,; космическое межзвездное пространство никоим образом не пусто. Если описывать объекты в порядке от большей к меньшей, то это будет выглядеть так:1)Галактика 2) Система галактик 3) Вселенная 4) Звезда.
Теория большого взрыва.Возраст Вселенной – 15-12 млрд. лет. По непонятным науке причинам Вселенная внезапно возникла в очень малом, практически точечном объеме чудовищной плотности и температуры(сингулярности) и стала стремительно расширяться. Различные эпохи нашей Вселенной: рождение пространства-времени, стадия инфляции, рождение вещества, рождение избытка барионов, электрослабый фазовый переход, кварки и глюоны – рождение протонов и нейтронов, первичный нуклеосинтез, доминирование темной материи, рекомбинация водорода, образование крупномасштабной структуры Вселенной. Основные наблюдательные тесты теории: распространенность легких элементов в космосе; красное смещения спектров удаленных галактик, открытие и исследование крупномасштабной структуры Вселенной; гравитационные линзы; реликтовое электромагнитное излучение, которое по интенсивности соответствует тепловому излучению абсолютно черного тела при температуре около 3 К.роблема эволюции Вселенной является центральной в естествознании. Вопросы о том, как велик окружающий нас звездный мир и когда он возник или был создан, интересуют людей с незапамятных времен. Ученик Фридмана Дж. Гамов рассчитал в конце сороковых годов модель горячей взрывающейся Вселенной, положив начало так называемой теории "Большого взрыва". Широкое распространение и внедрение эта теория получила с середины 1960-х годов.
Эволюция вселенной.Через несколько сек после большого взрыва Вселенная вступила в эпоху адронов, или тяжелых частиц. Температура была достаточно высока для того, чтобы образовывались пары адронов: мезоны, протоны и т.п., а также их античастицы. Примерно через сотую долю секунды после Большого взрыва, когда температура упала до 100 млрд. градусов, Вселенная вступила в эпоху лептонов. В эту эпоху наблюдалось тепловое равновесие, при котором электрон-позитронные пары рождались и аннигилировали примерно с одинаковой скоростью.Когда температура составляла около 10 млрд. градусов, Вселенная вступила в эпоху излучения. В начале этой эпохи было еще довольно много лептонов, но при понижении температуры до 3 млрд. градусов они быстро исчезли, испустив множество фотонов. В то время Вселенная состояла почти полностью из фотонов. В эпоху излучения произошло событие исключительной важности – в результате синтеза образовалось первое ядро. Вселенная уже достаточно остыла для того, чтобы столкнувшиеся протон и нейтрон соединились, образовав ядро дейтерия (более тяжелой разновидности водорода). При соударении двух ядер дейтерия образовались ядра гелия. Согласно этой теории гелий должен составлять около 25% вещества во вселенной, что подтверждается наблюдениями. Вселенная продолжала расширяться и охлаждаться в течение нескольких тысяч лет.Согласно теории Большого взрыва Вселенная расширяется, но теория не объясняет, что вызвало расширение или что произойдет со Вселенной в будущем. Впрочем, она дает нам косвенные свидетельства того, что Вселенная началась со взрыва огромной силы, и что в зависимости от количества вещества расширение может либо продолжаться бесконечно, либо прекратиться, и Вселенная снова сожмется в точку. Что будет со Вселенной дальше – неизвестно, но есть свидетельства того, что она находится в некоем пограничном состоянии. Вселенная находится на грани открытого (т.е. постоянного расширения) и закрытого (т.е. расширения с последующим сжатием – коллапсом) состояний.
Модели вселенной. две основные модели мира: открытая и закрытая.Открытая - основана на том, что расстояния между скоплениями галактик со временем непрерывно увеличивается, что соответствует бесконечной Вселенной. Закрытая - основана на том, что Вселенная оказывается конечной, но столь же неограниченной, так как двигаясь по ней, нельзя достичь какой-либо границы, ибо суть есть переходящая материя.
Космологические представления Аристотеля: шарообразная неоднородная Вселенная.
Геоцентрическая система мира Птолемея.
Гелиоцентрическая система мира Коперника.
И.Ньютон: Вселенная безграничная, бесконечная, однородная и неизменная. А.Эйнштейн: Вселенная однородна, изотропна и равномерно заполнена материей, преимущественно в форме вещества. А.А.Фридман: Вселенная нестационарна. Наблюдательное подтверждение нестационарности Вселенной: красное смещение в спектрах галактик, возникающее благодаря эффекту Доплера при их удалении от наблюдателя (разбегание галактик).