
- •2. Социо-, Био-, Инфо-, Когно-, Нано- - Что это ?
- •31. Шлифовка и полировка поверхностей подложек.
- •Нанотехнология. Варианты основных определений.
- •32. Защита планарных поверхностей.
- •33. Методы фотолитографии.
- •5. Зарождение и развитие нанотехнологии. Их перспективы.
- •34. Способы легирования материалов.
- •6. Финансово - экономические аспекты состояния и развития нанотехнологии.
- •35. Нанесение металлических плёнок.
- •7. Социальные и гуманитарные характеристики нанотехнологии.
- •8. Специфика наномира. Размерные эффекты.
- •37. Геттероэпитаксиальные структуры. Свч схемы для различных применений.
- •9. Роль свободных поверхностей.
- •38. Корпусирование микросхем.
- •Зарождение и рост наночастиц.
- •39. Технологические методы наноэлектроники как базовые для других наносистем.
- •Размерные эффекты.
- •Описание
- •40. Информационные технологии и их опора на наноэлектронику.
- •Самоорганизация и самосборка.
- •41. Энергетика. Солнечная энергетика как следствие развития наноэлектроники.
- •13. Технологии «сверху вниз» и «снизу вверх».
- •42. Нанокомпозитные и другие материалы для авиационной и космической техники.
- •Электронная микроскопия.
- •Атомно - силовая и туннельная микроскопия.
- •44. Геосферные и биосферные войны. Солдат ближайшего будущего.
- •Пьезоэффект и пьезодвигатели.
- •45. Нанотехнологии в атомной отрасли.
- •16. Многоликие зондовые методы микроскопии (до этого есть про разные микроскопы)
- •46. Наномедицина.
- •18. Спектроскопические методы.
- •47. Нанобиотехнологии.
- •19. Наночастицы и нанопорошки.
- •48. Нано в сельском хозяйстве.
- •20. Аллотропные формы углерода.
- •49. Умный дом.
- •55. Наноэтика.
- •27. Базовые материалы современной и перспективной наноэлектроники.
- •56. Образование в области нанотехнологии. Гуманитаризация технического образования.
Атомно - силовая и туннельная микроскопия.
ВИКИ:
Атомно-силовой микроскоп (АСМ, англ. AFM — atomic-force microscope) — сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного.
В отличие от сканирующего туннельного микроскопа, с помощью атомно-силового микроскопа можно исследовать как проводящие, так и непроводящие поверхности.
В сравнении с растровым электронным микроскопом (РЭМ) атомно-силовой микроскоп обладает рядом преимуществ. Так, в отличие от РЭМ, который даёт псевдотрёхмерное изображение поверхности образца, АСМ позволяет получить истинно трёхмерный рельеф поверхности. Кроме того, непроводящая поверхность, рассматриваемая с помощью АСМ, не требует нанесения проводящего металлического покрытия, которое часто приводит к заметной деформации поверхности. Для нормальной работы РЭМ требуется вакуум, в то время как большинство режимов АСМ могут быть реализованы на воздухе или даже в жидкости. Данное обстоятельство открывает возможность изучения биомакромолекул и живых клеток. В принципе, АСМ способен дать более высокое разрешение, чем РЭМ. Так было показано, что АСМ в состоянии обеспечить реальное атомное разрешение в условиях сверхвысокого вакуума. Сверхвысоковакуумный АСМ по разрешению сравним со сканирующим туннельным микроскопом и просвечивающим электронным микроскопом.
К недостатку АСМ при его сравнении с РЭМ также следует отнести небольшой размер поля сканирования. РЭМ в состоянии просканировать область поверхности размером в несколько миллиметров в латеральной плоскости с перепадом высот в несколько миллиметров в вертикальной плоскости. У АСМ максимальный перепад высот составляет несколько микрон, а максимальное поле сканирования в лучшем случае порядка 150×150 микрон². Другая проблема заключается в том, что при высоком разрешении качество изображения определяется радиусом кривизны кончика зонда, что при неправильном выборе зонда приводит к появлению артефактов на получаемом изображении.
ВИКИ:
Сканирующий туннельный микроскоп (СТМ, англ. STM — scanning tunneling microscope) — вариант сканирующего зондового микроскопа, предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем. При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения 1—1000 пА при расстояниях около 1 Å. Сканирующий туннельный микроскоп первый из класса сканирующих зондовых микроскопов; атомно-силовой и сканирующий ближнепольный оптический микроскопы были разработаны позднее.
В процессе сканирования игла движется вдоль поверхности образца, туннельный ток поддерживается стабильным за счёт действия обратной связи, и показания следящей системы меняются в зависимости от топографии поверхности. Такие изменения фиксируются, и на их основе строится карта высот. Другая методика предполагает движение иглы на фиксированной высоте над поверхностью образца. В этом случае фиксируется изменение величины туннельного тока и на основе данной информации идет построение топографии поверхности.